File size: 1,847 Bytes
f4595a0
c098e4b
f4595a0
 
 
 
 
 
 
c098e4b
 
f4595a0
003c9e7
c098e4b
003c9e7
f4595a0
c098e4b
003c9e7
f4595a0
c098e4b
 
 
003c9e7
 
 
 
 
 
 
c098e4b
f4595a0
 
 
c098e4b
f4595a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c098e4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
license: apache-2.0
base_model:
- OpenPipe/mistral-ft-optimized-1218
- mlabonne/NeuralHermes-2.5-Mistral-7B
tags:
- merge
- mergekit
- lazymergekit
- mistral
- optimized
---
# NeuralPipe-7B-slerp

This is a merge of pre-trained language models created using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing), combining the capabilities of OpenPipe's optimized Mistral and NeuralHermes through an efficient SLERP fusion.

## About Me
I'm David Soeiro-Vuong, a third-year Computer Science student working as an apprentice at TW3 Partners, a company specialized in Generative AI. Passionate about artificial intelligence and language models optimization, I focus on creating efficient model merges that balance performance and capabilities.

🔗 [Connect with me on LinkedIn](https://www.linkedin.com/in/david-soeiro-vuong-a28b582ba/)

## Merge Details
### Merge Method
This model uses SLERP (Spherical Linear Interpolation) with carefully tuned parameters:
- Optimized attention layer fusion patterns
- Balanced MLP layer transitions
- bfloat16 format for efficient memory usage
- Full layer utilization for maximum capability retention

### Models Merged
* [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)
* [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B)

### Configuration
```yaml
slices:
  - sources:
      - model: OpenPipe/mistral-ft-optimized-1218
        layer_range: [0, 32]
      - model: mlabonne/NeuralHermes-2.5-Mistral-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1218
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16