Davidsv commited on
Commit
c098e4b
·
verified ·
1 Parent(s): f4595a0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -33
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  base_model:
3
  - OpenPipe/mistral-ft-optimized-1218
4
  - mlabonne/NeuralHermes-2.5-Mistral-7B
@@ -6,18 +7,31 @@ tags:
6
  - merge
7
  - mergekit
8
  - lazymergekit
9
- - OpenPipe/mistral-ft-optimized-1218
10
- - mlabonne/NeuralHermes-2.5-Mistral-7B
11
  ---
 
 
 
12
 
13
- # NeuralPipe-7B-slerp
 
14
 
15
- NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
 
 
 
 
 
 
 
 
 
 
16
  * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)
17
  * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B)
18
 
19
- ## 🧩 Configuration
20
-
21
  ```yaml
22
  slices:
23
  - sources:
@@ -34,30 +48,4 @@ parameters:
34
  - filter: mlp
35
  value: [1, 0.5, 0.7, 0.3, 0]
36
  - value: 0.5
37
- dtype: bfloat16
38
- ```
39
-
40
- ## 💻 Usage
41
-
42
- ```python
43
- !pip install -qU transformers accelerate
44
-
45
- from transformers import AutoTokenizer
46
- import transformers
47
- import torch
48
-
49
- model = "Davidsv/NeuralPipe-7B-slerp"
50
- messages = [{"role": "user", "content": "What is a large language model?"}]
51
-
52
- tokenizer = AutoTokenizer.from_pretrained(model)
53
- prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
54
- pipeline = transformers.pipeline(
55
- "text-generation",
56
- model=model,
57
- torch_dtype=torch.float16,
58
- device_map="auto",
59
- )
60
-
61
- outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
62
- print(outputs[0]["generated_text"])
63
- ```
 
1
  ---
2
+ license: apache-2.0
3
  base_model:
4
  - OpenPipe/mistral-ft-optimized-1218
5
  - mlabonne/NeuralHermes-2.5-Mistral-7B
 
7
  - merge
8
  - mergekit
9
  - lazymergekit
10
+ - mistral
11
+ - optimized
12
  ---
13
+ # NeuralPipe-7B-slerp (3B Parameters)
14
+
15
+ This is an optimized merge of pre-trained language models created using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing), successfully reducing the original 7B models to approximately 3B parameters while maintaining core capabilities.
16
 
17
+ ## About Me
18
+ I'm David Soeiro-Vuong, a third-year Computer Science student working as an apprentice at TW3 Partners, a company specialized in Generative AI. Passionate about artificial intelligence and language models optimization, I focus on creating efficient model merges that balance performance and resource usage.
19
 
20
+ 🔗 [Connect with me on LinkedIn](https://www.linkedin.com/in/david-soeiro-vuong-a28b582ba/)
21
+
22
+ ## Model Size Optimization
23
+ The reduction from 7B to 3B parameters was achieved through:
24
+ - Layer reduction from 32 to 12 layers
25
+ - Conversion to bfloat16 format (half precision)
26
+ - Selective layer range implementation
27
+ - SLERP merge method optimization
28
+
29
+ ## Merge Details
30
+ ### Models Merged
31
  * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)
32
  * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B)
33
 
34
+ ### Configuration
 
35
  ```yaml
36
  slices:
37
  - sources:
 
48
  - filter: mlp
49
  value: [1, 0.5, 0.7, 0.3, 0]
50
  - value: 0.5
51
+ dtype: bfloat16