File size: 2,590 Bytes
9b29598
 
 
 
b3cc58c
 
9b29598
 
8cec066
 
9b29598
 
 
ac27e7b
 
 
 
9b29598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3cc58c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model:
- meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-generation
library_name: transformers
---
# LlamaThink-8b-instruct
![LlamaThink Logo](https://huggingface.co/DavidBrowne17/LlamaThink-8B-instruct/resolve/main/llamathinker.png)


LlamaThink-8b-instruct is an instruction-tuned language model built on the LLaMA-3 architecture. It is optimized for generating thoughtful, structured responses using a unique dual-section output format.

## GGUF Files
[LlamaThink-8b-instruct-GGUF](https://huggingface.co/DavidBrowne17/LlamaThink-8B-instruct-GGUF).


## Model Details
- **Architecture:** LLaMA-3
- **Size:** 8 billion parameters
- **License:** Apache 2.0

## Usage

### System Prompt
To ensure the model generates responses in the intended format, use the following system prompt:

```
Respond in the following format:
<thinking>
...
</thinking>
<answer>
...
</answer>
```

### Example Input
```
What are the benefits of using LlamaThink-8b-instruct for AI research?
```

### Example Output
```
<thinking>
LlamaThink-8b-instruct is built on the robust LLaMA-3 architecture, which offers enhanced performance and scalability. Its instruction-tuning ensures it understands complex prompts and provides structured responses. This makes it ideal for research applications where clarity and precision are essential.
</thinking>
<answer>
Using LlamaThink-8b-instruct for AI research provides benefits such as improved contextual understanding, consistent response formatting, and adaptability to various domains. Its open-source Apache 2.0 license also encourages innovation and collaboration.
</answer>
```

## Installation

You can load the model directly from Hugging Face:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "DavidBrowne17/LlamaThink-8B-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
```

## Citation
If you use LlamaThink-8b-instruct in your research or applications, please cite it as follows:

```
@misc{llamathink2025,
  author = {David Browne},
  title = {LlamaThink-8b-instruct},
  year = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/DavidBrowne17/LlamaThink-8B-instruct}},
  license = {Apache 2.0}
}
```

## License
LlamaThink-8b-instruct is released under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).

## Contact
For questions or contributions, reach out via [Hugging Face](https://huggingface.co/DavidBrowne17) or [GitHub](https://github.com/davidbrowne17).