DavidBrowne17 commited on
Commit
9b29598
·
verified ·
1 Parent(s): 722853c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -3
README.md CHANGED
@@ -1,3 +1,76 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - meta-llama/Llama-3.1-8B-Instruct
5
+ ---
6
+ # LlamaThink-8b-instruct
7
+
8
+ LlamaThink-8b-instruct is an instruction-tuned language model built on the LLaMA-3 architecture. It is optimized for generating thoughtful, structured responses using a unique dual-section output format.
9
+
10
+ ## Model Details
11
+ - **Architecture:** LLaMA-3
12
+ - **Size:** 8 billion parameters
13
+ - **License:** Apache 2.0
14
+
15
+ ## Usage
16
+
17
+ ### System Prompt
18
+ To ensure the model generates responses in the intended format, use the following system prompt:
19
+
20
+ ```
21
+ Respond in the following format:
22
+ <thinking>
23
+ ...
24
+ </thinking>
25
+ <answer>
26
+ ...
27
+ </answer>
28
+ ```
29
+
30
+ ### Example Input
31
+ ```
32
+ What are the benefits of using LlamaThink-8b-instruct for AI research?
33
+ ```
34
+
35
+ ### Example Output
36
+ ```
37
+ <thinking>
38
+ LlamaThink-8b-instruct is built on the robust LLaMA-3 architecture, which offers enhanced performance and scalability. Its instruction-tuning ensures it understands complex prompts and provides structured responses. This makes it ideal for research applications where clarity and precision are essential.
39
+ </thinking>
40
+ <answer>
41
+ Using LlamaThink-8b-instruct for AI research provides benefits such as improved contextual understanding, consistent response formatting, and adaptability to various domains. Its open-source Apache 2.0 license also encourages innovation and collaboration.
42
+ </answer>
43
+ ```
44
+
45
+ ## Installation
46
+
47
+ You can load the model directly from Hugging Face:
48
+
49
+ ```python
50
+ from transformers import AutoModelForCausalLM, AutoTokenizer
51
+
52
+ model_name = "DavidBrowne17/LlamaThink-8B-instruct"
53
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
54
+ model = AutoModelForCausalLM.from_pretrained(model_name)
55
+ ```
56
+
57
+ ## Citation
58
+ If you use LlamaThink-8b-instruct in your research or applications, please cite it as follows:
59
+
60
+ ```
61
+ @misc{llamathink2025,
62
+ author = {David Browne},
63
+ title = {LlamaThink-8b-instruct},
64
+ year = {2025},
65
+ publisher = {Hugging Face},
66
+ howpublished = {\url{https://huggingface.co/DavidBrowne17/LlamaThink-8B-instruct}},
67
+ license = {Apache 2.0}
68
+ }
69
+ ```
70
+
71
+ ## License
72
+ LlamaThink-8b-instruct is released under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
73
+
74
+ ## Contact
75
+ For questions or contributions, reach out via [Hugging Face](https://huggingface.co/DavidBrowne17) or [GitHub](https://github.com/davidbrowne17).
76
+