Image Classification
Keras
English
art
benjaminStreltzin commited on
Commit
45a1db8
·
1 Parent(s): a44aa14

path updates

Browse files
__pycache__/project_cnn_ela.cpython-310.pyc ADDED
Binary file (4.62 kB). View file
 
cnn_ela_test.py CHANGED
@@ -78,8 +78,8 @@ test_fake_folder = 'datasets/test_set/fake/'
78
 
79
 
80
 
81
- test_real_ela_folder = 'datasets/test_set/ela_real/'
82
- test_fake_ela_folder = 'datasets/test_set/ela_fake/'
83
 
84
 
85
 
@@ -91,7 +91,7 @@ Y_test = []
91
 
92
  # Preprocess test set
93
  for index, row in test_set.iterrows():
94
- X_test.append(array(convert_to_ela_image(row[0], 90, test_real_ela_folder).resize((128, 128))).flatten() / 255.0)
95
  Y_test.append(row[1])
96
 
97
  # Convert to numpy arrays
 
78
 
79
 
80
 
81
+ test_ela_output = 'datasets/training_set/ela_output/'
82
+
83
 
84
 
85
 
 
91
 
92
  # Preprocess test set
93
  for index, row in test_set.iterrows():
94
+ X_test.append(array(convert_to_ela_image(row[0], 90, test_ela_output).resize((128, 128))).flatten() / 255.0)
95
  Y_test.append(row[1])
96
 
97
  # Convert to numpy arrays
datasets/test_set/none.txt DELETED
File without changes
project_cnn_ela.py CHANGED
@@ -96,15 +96,10 @@ if __name__ == "__main__":
96
 
97
 
98
 
99
- test_real_folder = 'datasets/test_set/real/'
100
- test_fake_folder = 'datasets/test_set/fake/'
101
 
102
 
103
- traning_fake_ela_folder = 'datasets/training_set/ela_fake/'
104
- traning_real_ela_folder = 'datasets/training_set/ela_real/'
105
 
106
- test_real_ela_folder = 'datasets/test_set/ela_real/'
107
- test_fake_ela_folder = 'datasets/test_set/ela_fake/'
108
 
109
 
110
 
@@ -115,7 +110,7 @@ if __name__ == "__main__":
115
  Y = []
116
 
117
  for index, row in traning_set.iterrows():
118
- X.append(array(convert_to_ela_image(row[0], 90,traning_real_ela_folder).resize((128, 128))).flatten() / 255.0)
119
  Y.append(row[1])
120
 
121
 
 
96
 
97
 
98
 
99
+ traning_ela_output = 'datasets/training_set/ela_output/'
 
100
 
101
 
 
 
102
 
 
 
103
 
104
 
105
 
 
110
  Y = []
111
 
112
  for index, row in traning_set.iterrows():
113
+ X.append(array(convert_to_ela_image(row[0], 90,traning_ela_output).resize((128, 128))).flatten() / 255.0)
114
  Y.append(row[1])
115
 
116