Commit
·
45a1db8
1
Parent(s):
a44aa14
path updates
Browse files- __pycache__/project_cnn_ela.cpython-310.pyc +0 -0
- cnn_ela_test.py +3 -3
- datasets/test_set/none.txt +0 -0
- project_cnn_ela.py +2 -7
__pycache__/project_cnn_ela.cpython-310.pyc
ADDED
Binary file (4.62 kB). View file
|
|
cnn_ela_test.py
CHANGED
@@ -78,8 +78,8 @@ test_fake_folder = 'datasets/test_set/fake/'
|
|
78 |
|
79 |
|
80 |
|
81 |
-
|
82 |
-
|
83 |
|
84 |
|
85 |
|
@@ -91,7 +91,7 @@ Y_test = []
|
|
91 |
|
92 |
# Preprocess test set
|
93 |
for index, row in test_set.iterrows():
|
94 |
-
X_test.append(array(convert_to_ela_image(row[0], 90,
|
95 |
Y_test.append(row[1])
|
96 |
|
97 |
# Convert to numpy arrays
|
|
|
78 |
|
79 |
|
80 |
|
81 |
+
test_ela_output = 'datasets/training_set/ela_output/'
|
82 |
+
|
83 |
|
84 |
|
85 |
|
|
|
91 |
|
92 |
# Preprocess test set
|
93 |
for index, row in test_set.iterrows():
|
94 |
+
X_test.append(array(convert_to_ela_image(row[0], 90, test_ela_output).resize((128, 128))).flatten() / 255.0)
|
95 |
Y_test.append(row[1])
|
96 |
|
97 |
# Convert to numpy arrays
|
datasets/test_set/none.txt
DELETED
File without changes
|
project_cnn_ela.py
CHANGED
@@ -96,15 +96,10 @@ if __name__ == "__main__":
|
|
96 |
|
97 |
|
98 |
|
99 |
-
|
100 |
-
test_fake_folder = 'datasets/test_set/fake/'
|
101 |
|
102 |
|
103 |
-
traning_fake_ela_folder = 'datasets/training_set/ela_fake/'
|
104 |
-
traning_real_ela_folder = 'datasets/training_set/ela_real/'
|
105 |
|
106 |
-
test_real_ela_folder = 'datasets/test_set/ela_real/'
|
107 |
-
test_fake_ela_folder = 'datasets/test_set/ela_fake/'
|
108 |
|
109 |
|
110 |
|
@@ -115,7 +110,7 @@ if __name__ == "__main__":
|
|
115 |
Y = []
|
116 |
|
117 |
for index, row in traning_set.iterrows():
|
118 |
-
X.append(array(convert_to_ela_image(row[0], 90,
|
119 |
Y.append(row[1])
|
120 |
|
121 |
|
|
|
96 |
|
97 |
|
98 |
|
99 |
+
traning_ela_output = 'datasets/training_set/ela_output/'
|
|
|
100 |
|
101 |
|
|
|
|
|
102 |
|
|
|
|
|
103 |
|
104 |
|
105 |
|
|
|
110 |
Y = []
|
111 |
|
112 |
for index, row in traning_set.iterrows():
|
113 |
+
X.append(array(convert_to_ela_image(row[0], 90,traning_ela_output).resize((128, 128))).flatten() / 255.0)
|
114 |
Y.append(row[1])
|
115 |
|
116 |
|