Commit 
							
							·
						
						a44aa14
	
1
								Parent(s):
							
							3d2a04d
								
first upload
Browse files- ELA_CNN_ART_V2.h5 +3 -0
- cnn_ela_test.py +175 -0
- datasets/test_set/none.txt +0 -0
- project_cnn_ela.py +199 -0
    	
        ELA_CNN_ART_V2.h5
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c9b681289e0f151aeb2f52c56dda38c8e1ea89a22ff11e1066c63ad2b3e68fd2
         | 
| 3 | 
            +
            size 236205528
         | 
    	
        cnn_ela_test.py
    ADDED
    
    | @@ -0,0 +1,175 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # -*- coding: utf-8 -*-
         | 
| 2 | 
            +
            """
         | 
| 3 | 
            +
            Created on Fri May 24 14:31:20 2024
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            @author: beni
         | 
| 6 | 
            +
            """
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            ###test on art 30 epoches
         | 
| 9 | 
            +
            ###Test Loss: 0.7387489676475525
         | 
| 10 | 
            +
            #Test Accuracy: 0.8525179624557495  ELA_CNN_ART.h5
         | 
| 11 | 
            +
            ####
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            #####test on objects 
         | 
| 16 | 
            +
            ###ELA_CNN_OBJ.h5
         | 
| 17 | 
            +
            #Test Loss: 1.260271430015564
         | 
| 18 | 
            +
            #Test Accuracy: 0.5509259104728699
         | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
            from keras.models import Sequential
         | 
| 22 | 
            +
            from keras.layers import Conv2D, MaxPool2D, Dropout, Flatten, Dense
         | 
| 23 | 
            +
            from project_cnn_ela import convert_to_ela_image, shuffle_and_split_data, labeling
         | 
| 24 | 
            +
            import pandas as pd
         | 
| 25 | 
            +
            import numpy as np
         | 
| 26 | 
            +
            from PIL import Image
         | 
| 27 | 
            +
            import os
         | 
| 28 | 
            +
            from pylab import *
         | 
| 29 | 
            +
            import re
         | 
| 30 | 
            +
            from PIL import Image, ImageChops, ImageEnhance
         | 
| 31 | 
            +
            import tensorflow as tf
         | 
| 32 | 
            +
            import itertools
         | 
| 33 | 
            +
            from tensorflow.keras.utils import to_categorical 
         | 
| 34 | 
            +
            from tensorflow.keras.optimizers.legacy import RMSprop
         | 
| 35 | 
            +
            from sklearn.metrics import confusion_matrix
         | 
| 36 | 
            +
            import seaborn as sns
         | 
| 37 | 
            +
            import matplotlib.pyplot as plt
         | 
| 38 | 
            +
            from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
         | 
| 39 | 
            +
            from copy import deepcopy
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            model = Sequential()
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'valid', 
         | 
| 44 | 
            +
                                 activation ='relu', input_shape = (128,128,3)))
         | 
| 45 | 
            +
            print("Input: ", model.input_shape)
         | 
| 46 | 
            +
            print("Output: ", model.output_shape)
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'valid', 
         | 
| 49 | 
            +
                                 activation ='relu'))
         | 
| 50 | 
            +
            print("Input: ", model.input_shape)
         | 
| 51 | 
            +
            print("Output: ", model.output_shape)
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            model.add(MaxPool2D(pool_size=(2,2)))
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            model.add(Dropout(0.25))
         | 
| 56 | 
            +
            print("Input: ", model.input_shape)
         | 
| 57 | 
            +
            print("Output: ", model.output_shape)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            model.add(Flatten())
         | 
| 60 | 
            +
            model.add(Dense(256, activation = "relu"))
         | 
| 61 | 
            +
            model.add(Dropout(0.5))
         | 
| 62 | 
            +
            model.add(Dense(2, activation = "softmax"))
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            model.summary()
         | 
| 65 | 
            +
             | 
| 66 | 
            +
             | 
| 67 | 
            +
            # Load saved weights
         | 
| 68 | 
            +
            model.load_weights("ELA_CNN_ART_V2.h5")
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            optimizer = RMSprop(lr=0.0005, rho=0.9, epsilon=1e-08, decay=0.0)
         | 
| 71 | 
            +
            model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
         | 
| 72 | 
            +
             | 
| 73 | 
            +
             | 
| 74 | 
            +
             | 
| 75 | 
            +
             | 
| 76 | 
            +
            test_real_folder = 'datasets/test_set/real/'
         | 
| 77 | 
            +
            test_fake_folder = 'datasets/test_set/fake/'
         | 
| 78 | 
            +
             | 
| 79 | 
            +
             | 
| 80 | 
            +
             | 
| 81 | 
            +
            test_real_ela_folder = 'datasets/test_set/ela_real/'
         | 
| 82 | 
            +
            test_fake_ela_folder = 'datasets/test_set/ela_fake/'
         | 
| 83 | 
            +
             | 
| 84 | 
            +
             | 
| 85 | 
            +
             | 
| 86 | 
            +
            test_set = labeling(test_real_folder, test_fake_folder)
         | 
| 87 | 
            +
            X_test = []
         | 
| 88 | 
            +
            Y_test = []
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
             | 
| 92 | 
            +
            # Preprocess test set
         | 
| 93 | 
            +
            for index, row in test_set.iterrows():
         | 
| 94 | 
            +
                X_test.append(array(convert_to_ela_image(row[0], 90, test_real_ela_folder).resize((128, 128))).flatten() / 255.0)
         | 
| 95 | 
            +
                Y_test.append(row[1])
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            # Convert to numpy arrays
         | 
| 98 | 
            +
            X_test = np.array(X_test)
         | 
| 99 | 
            +
            Y_test = to_categorical(Y_test, 2)
         | 
| 100 | 
            +
             | 
| 101 | 
            +
            # Reshape images
         | 
| 102 | 
            +
            X_test = X_test.reshape(-1, 128, 128, 3)
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            # Evaluate the model on test set
         | 
| 105 | 
            +
            test_loss, test_accuracy = model.evaluate(X_test, Y_test)
         | 
| 106 | 
            +
            print()
         | 
| 107 | 
            +
            print("~~~~~art Dataset~~~~")
         | 
| 108 | 
            +
            print()
         | 
| 109 | 
            +
            print("Test Loss:", test_loss)
         | 
| 110 | 
            +
            print("Test Accuracy:", test_accuracy)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
            #######################################################
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            def calculate_acc(y_true, y_pred):
         | 
| 115 | 
            +
                
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                # Calculate precision
         | 
| 118 | 
            +
                precision = precision_score(y_true, y_pred)
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                # Calculate recall
         | 
| 121 | 
            +
                recall = recall_score(y_true, y_pred)
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                # Calculate F1 score
         | 
| 124 | 
            +
                f1 = f1_score(y_true, y_pred)
         | 
| 125 | 
            +
                
         | 
| 126 | 
            +
                # Calculate confusion matrix
         | 
| 127 | 
            +
                conf_matrix = confusion_matrix(y_true, y_pred)
         | 
| 128 | 
            +
             | 
| 129 | 
            +
             | 
| 130 | 
            +
                print("Precision:", precision)
         | 
| 131 | 
            +
                print("Recall:", recall)
         | 
| 132 | 
            +
                print("F1 Score:", f1)
         | 
| 133 | 
            +
                print("Confusion Matrix:")
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                # Plot confusion matrix
         | 
| 136 | 
            +
                plt.figure(figsize=(8, 6))
         | 
| 137 | 
            +
                sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False)
         | 
| 138 | 
            +
                plt.xlabel('Predicted Label')
         | 
| 139 | 
            +
                plt.ylabel('True Label')
         | 
| 140 | 
            +
                plt.title('Confusion Matrix')
         | 
| 141 | 
            +
                plt.show()
         | 
| 142 | 
            +
                
         | 
| 143 | 
            +
             | 
| 144 | 
            +
             | 
| 145 | 
            +
            # Get predicted probabilities
         | 
| 146 | 
            +
            Y_pred_prob = model.predict(X_test)
         | 
| 147 | 
            +
             | 
| 148 | 
            +
            # Convert predicted probabilities to class labels
         | 
| 149 | 
            +
            Y_pred = np.argmax(Y_pred_prob, axis=1)
         | 
| 150 | 
            +
             | 
| 151 | 
            +
            Y_true = np.argmax(Y_test, axis=1)
         | 
| 152 | 
            +
             | 
| 153 | 
            +
            # Calculate accuracies
         | 
| 154 | 
            +
            calculate_acc(Y_true, Y_pred)
         | 
| 155 | 
            +
             | 
| 156 | 
            +
            model.summary()
         | 
| 157 | 
            +
             | 
| 158 | 
            +
             | 
| 159 | 
            +
             | 
| 160 | 
            +
             | 
| 161 | 
            +
             | 
| 162 | 
            +
             | 
| 163 | 
            +
             | 
| 164 | 
            +
             | 
| 165 | 
            +
             | 
| 166 | 
            +
             | 
| 167 | 
            +
             | 
| 168 | 
            +
             | 
| 169 | 
            +
             | 
| 170 | 
            +
             | 
| 171 | 
            +
             | 
| 172 | 
            +
             | 
| 173 | 
            +
             | 
| 174 | 
            +
             | 
| 175 | 
            +
             | 
    	
        datasets/test_set/none.txt
    ADDED
    
    | 
            File without changes
         | 
    	
        project_cnn_ela.py
    ADDED
    
    | @@ -0,0 +1,199 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # -*- coding: utf-8 -*-
         | 
| 2 | 
            +
            """
         | 
| 3 | 
            +
            Created on Mon Apr 29 17:46:18 2024
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            @author: beni
         | 
| 6 | 
            +
            """
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            import pandas as pd
         | 
| 9 | 
            +
            import numpy as np
         | 
| 10 | 
            +
            import matplotlib.pyplot as plt
         | 
| 11 | 
            +
            import matplotlib.image as mpimg
         | 
| 12 | 
            +
            from PIL import Image
         | 
| 13 | 
            +
            import os
         | 
| 14 | 
            +
            from pylab import *
         | 
| 15 | 
            +
            import re
         | 
| 16 | 
            +
            from PIL import Image, ImageChops, ImageEnhance
         | 
| 17 | 
            +
            import tensorflow as tf
         | 
| 18 | 
            +
            from sklearn.model_selection import train_test_split
         | 
| 19 | 
            +
            from sklearn.metrics import confusion_matrix
         | 
| 20 | 
            +
            import itertools
         | 
| 21 | 
            +
            from tensorflow.keras.utils import to_categorical # convert to one-hot-encoding
         | 
| 22 | 
            +
            from keras.models import Sequential
         | 
| 23 | 
            +
            from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
         | 
| 24 | 
            +
            from tensorflow.keras.optimizers.legacy import RMSprop
         | 
| 25 | 
            +
            from keras.preprocessing.image import ImageDataGenerator
         | 
| 26 | 
            +
            from keras.callbacks import ReduceLROnPlateau, EarlyStopping
         | 
| 27 | 
            +
            from scipy.ndimage import gaussian_filter
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
             | 
| 32 | 
            +
             | 
| 33 | 
            +
            def convert_to_ela_image(path, quality, output_dir, resize=(256, 256)):
         | 
| 34 | 
            +
                filename = path
         | 
| 35 | 
            +
                resaved_filename = os.path.join(output_dir, os.path.splitext(os.path.basename(filename))[0] + '.resaved.jpg')
         | 
| 36 | 
            +
                ELA_filename = os.path.join(output_dir, os.path.splitext(os.path.basename(filename))[0] + '.ela.png')
         | 
| 37 | 
            +
                
         | 
| 38 | 
            +
                # Open and resize the image
         | 
| 39 | 
            +
                im = Image.open(filename).convert('RGB')
         | 
| 40 | 
            +
                im_resized = im.resize(resize)
         | 
| 41 | 
            +
                
         | 
| 42 | 
            +
                # Save the resized image
         | 
| 43 | 
            +
                im_resized.save(resaved_filename, 'JPEG', quality=quality)
         | 
| 44 | 
            +
                resaved_im = Image.open(resaved_filename)
         | 
| 45 | 
            +
                
         | 
| 46 | 
            +
                ela_im = ImageChops.difference(im_resized, resaved_im)
         | 
| 47 | 
            +
                
         | 
| 48 | 
            +
                extrema = ela_im.getextrema()
         | 
| 49 | 
            +
                max_diff = max([ex[1] for ex in extrema])
         | 
| 50 | 
            +
                if max_diff == 0:
         | 
| 51 | 
            +
                    max_diff = 1
         | 
| 52 | 
            +
                scale = 255.0 / max_diff
         | 
| 53 | 
            +
                
         | 
| 54 | 
            +
                ela_im = ImageEnhance.Brightness(ela_im).enhance(scale)
         | 
| 55 | 
            +
                
         | 
| 56 | 
            +
                ela_im.save(ELA_filename)
         | 
| 57 | 
            +
                
         | 
| 58 | 
            +
                return ela_im
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            def shuffle_and_split_data(dataframe, test_size=0.2, random_state=59):
         | 
| 61 | 
            +
                # Shuffle the DataFrame
         | 
| 62 | 
            +
                shuffled_df = dataframe.sample(frac=1, random_state=random_state).reset_index(drop=True)
         | 
| 63 | 
            +
                
         | 
| 64 | 
            +
                # Split the DataFrame into train and validation sets
         | 
| 65 | 
            +
                train_df, val_df = train_test_split(shuffled_df, test_size=test_size, random_state=random_state)
         | 
| 66 | 
            +
                
         | 
| 67 | 
            +
                return train_df, val_df
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            def labeling(path_real, path_fake):
         | 
| 70 | 
            +
                image_paths = []
         | 
| 71 | 
            +
                labels = []
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                for filename in os.listdir(path_real):
         | 
| 74 | 
            +
                    image_paths.append(os.path.join(path_real, filename))
         | 
| 75 | 
            +
                    labels.append(0)
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                for filename in os.listdir(path_fake):
         | 
| 78 | 
            +
                    image_paths.append(os.path.join(path_fake, filename))
         | 
| 79 | 
            +
                    labels.append(1)
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                dataset = pd.DataFrame({'image_path': image_paths, 'label': labels})
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                return dataset
         | 
| 84 | 
            +
             | 
| 85 | 
            +
             | 
| 86 | 
            +
            if __name__ == "__main__":
         | 
| 87 | 
            +
                
         | 
| 88 | 
            +
               
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                 
         | 
| 91 | 
            +
                np.random.seed(22)
         | 
| 92 | 
            +
                tf.random.set_seed(9)
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                traning_fake_folder = 'datasets/training_set/fake/'
         | 
| 95 | 
            +
                traning_real_folder = 'datasets/training_set/real/'
         | 
| 96 | 
            +
             | 
| 97 | 
            +
             | 
| 98 | 
            +
             | 
| 99 | 
            +
                test_real_folder = 'datasets/test_set/real/'
         | 
| 100 | 
            +
                test_fake_folder = 'datasets/test_set/fake/'
         | 
| 101 | 
            +
             | 
| 102 | 
            +
             | 
| 103 | 
            +
                traning_fake_ela_folder = 'datasets/training_set/ela_fake/'
         | 
| 104 | 
            +
                traning_real_ela_folder = 'datasets/training_set/ela_real/'
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                test_real_ela_folder = 'datasets/test_set/ela_real/'
         | 
| 107 | 
            +
                test_fake_ela_folder = 'datasets/test_set/ela_fake/'
         | 
| 108 | 
            +
             | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
                traning_set = labeling(traning_real_folder, traning_fake_folder)
         | 
| 112 | 
            +
                    
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                X = []
         | 
| 115 | 
            +
                Y = []
         | 
| 116 | 
            +
                    
         | 
| 117 | 
            +
                for index, row in traning_set.iterrows():
         | 
| 118 | 
            +
                   X.append(array(convert_to_ela_image(row[0], 90,traning_real_ela_folder).resize((128, 128))).flatten() / 255.0)
         | 
| 119 | 
            +
                   Y.append(row[1])
         | 
| 120 | 
            +
             | 
| 121 | 
            +
             | 
| 122 | 
            +
                X = np.array(X)
         | 
| 123 | 
            +
                Y = to_categorical(Y, 2)
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                X = X.reshape(-1, 128, 128, 3)
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size = 0.2, random_state=1,shuffle=True)
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                model = Sequential()
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'valid', 
         | 
| 132 | 
            +
                                 activation ='relu', input_shape = (128,128,3)))
         | 
| 133 | 
            +
                print("Input: ", model.input_shape)
         | 
| 134 | 
            +
                print("Output: ", model.output_shape)
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'valid', 
         | 
| 137 | 
            +
                                 activation ='relu'))
         | 
| 138 | 
            +
                print("Input: ", model.input_shape)
         | 
| 139 | 
            +
                print("Output: ", model.output_shape)
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                model.add(MaxPool2D(pool_size=(2,2)))
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                model.add(Dropout(0.25))
         | 
| 144 | 
            +
                print("Input: ", model.input_shape)
         | 
| 145 | 
            +
                print("Output: ", model.output_shape)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                model.add(Flatten())
         | 
| 148 | 
            +
                model.add(Dense(256, activation = "relu"))
         | 
| 149 | 
            +
                model.add(Dropout(0.5))
         | 
| 150 | 
            +
                model.add(Dense(2, activation = "softmax"))
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                model.summary()
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                optimizer = RMSprop(lr=0.0005, rho=0.9, epsilon=1e-08, decay=0.0)
         | 
| 155 | 
            +
                model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                early_stopping = EarlyStopping(monitor='val_acc',
         | 
| 158 | 
            +
                                              min_delta=0,
         | 
| 159 | 
            +
                                              patience=2,
         | 
| 160 | 
            +
                    verbose=0, mode='auto')
         | 
| 161 | 
            +
                
         | 
| 162 | 
            +
                
         | 
| 163 | 
            +
                epochs = 22
         | 
| 164 | 
            +
                batch_size = 100
         | 
| 165 | 
            +
                
         | 
| 166 | 
            +
                
         | 
| 167 | 
            +
                history = model.fit(X_train, Y_train, batch_size = batch_size, epochs = epochs, 
         | 
| 168 | 
            +
                          validation_data = (X_val, Y_val), verbose = 2, callbacks=[early_stopping])
         | 
| 169 | 
            +
                
         | 
| 170 | 
            +
                plt.plot(history.history['accuracy'])
         | 
| 171 | 
            +
                plt.plot(history.history['val_accuracy'])
         | 
| 172 | 
            +
                plt.title('Model accuracy')
         | 
| 173 | 
            +
                plt.xlabel('Epoch')
         | 
| 174 | 
            +
                plt.ylabel('Accuracy')
         | 
| 175 | 
            +
                plt.legend(['Train', 'Validation'], loc='upper left')
         | 
| 176 | 
            +
                plt.show()
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                # Plot training & validation loss values
         | 
| 179 | 
            +
                plt.plot(history.history['loss'])
         | 
| 180 | 
            +
                plt.plot(history.history['val_loss'])
         | 
| 181 | 
            +
                plt.title('Model loss')
         | 
| 182 | 
            +
                plt.xlabel('Epoch')
         | 
| 183 | 
            +
                plt.ylabel('Loss')
         | 
| 184 | 
            +
                plt.legend(['Train', 'Validation'], loc='upper left')
         | 
| 185 | 
            +
                plt.show()
         | 
| 186 | 
            +
             | 
| 187 | 
            +
            # every training can give different results , we got the best training score so no need to run again
         | 
| 188 | 
            +
            #    model.save('ELA_CNN_ART_V2.h5')
         | 
| 189 | 
            +
                
         | 
| 190 | 
            +
                
         | 
| 191 | 
            +
             | 
| 192 | 
            +
             | 
| 193 | 
            +
             | 
| 194 | 
            +
             | 
| 195 | 
            +
             | 
| 196 | 
            +
             | 
| 197 | 
            +
             | 
| 198 | 
            +
             | 
| 199 | 
            +
             | 
