|
|
|
"""
|
|
Created on Sat May 18 16:15:32 2024
|
|
@author: litav
|
|
"""
|
|
|
|
|
|
"""
|
|
Created on Sat May 18 16:15:32 2024
|
|
@author: litav
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
import random
|
|
import os
|
|
import pandas as pd
|
|
import cv2
|
|
import matplotlib.pyplot as plt
|
|
from sklearn.model_selection import KFold
|
|
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten
|
|
from tensorflow.keras.optimizers import Adam
|
|
from tensorflow.keras.models import Sequential
|
|
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
|
|
from tensorflow.keras.layers import Dropout
|
|
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
|
|
from sklearn.metrics import precision_score, recall_score, f1_score, classification_report
|
|
|
|
|
|
|
|
import warnings
|
|
warnings.filterwarnings("ignore", category=UserWarning, message=".*iCCP:.*")
|
|
|
|
|
|
train_real_folder = 'datasets/training_set/real/'
|
|
train_fake_folder = 'datasets/training_set/fake/'
|
|
test_real_folder = 'datasets/test_set/real/'
|
|
test_fake_folder = 'datasets/test_set/fake/'
|
|
|
|
|
|
train_image_paths = []
|
|
train_labels = []
|
|
|
|
|
|
for filename in os.listdir(train_real_folder):
|
|
image_path = os.path.join(train_real_folder, filename)
|
|
label = 0
|
|
train_image_paths.append(image_path)
|
|
train_labels.append(label)
|
|
|
|
|
|
for filename in os.listdir(train_fake_folder):
|
|
image_path = os.path.join(train_fake_folder, filename)
|
|
label = 1
|
|
train_image_paths.append(image_path)
|
|
train_labels.append(label)
|
|
|
|
|
|
test_image_paths = []
|
|
test_labels = []
|
|
|
|
|
|
for filename in os.listdir(test_real_folder):
|
|
image_path = os.path.join(test_real_folder, filename)
|
|
label = 0
|
|
test_image_paths.append(image_path)
|
|
test_labels.append(label)
|
|
|
|
|
|
for filename in os.listdir(test_fake_folder):
|
|
image_path = os.path.join(test_fake_folder, filename)
|
|
label = 1
|
|
test_image_paths.append(image_path)
|
|
test_labels.append(label)
|
|
|
|
|
|
train_dataset = pd.DataFrame({'image_path': train_image_paths, 'label': train_labels})
|
|
test_dataset = pd.DataFrame({'image_path': test_image_paths, 'label': test_labels})
|
|
|
|
|
|
def preprocess_image(image_path):
|
|
"""Loads, resizes, and normalizes an image."""
|
|
image = cv2.imread(image_path)
|
|
resized_image = cv2.resize(image, (128, 128))
|
|
normalized_image = resized_image.astype(np.float32) / 255.0
|
|
return normalized_image
|
|
|
|
|
|
X = np.array([preprocess_image(path) for path in train_image_paths])
|
|
Y = np.array(train_labels)
|
|
|
|
|
|
def build_discriminator(input_shape, dropout_rate=0.5):
|
|
model = Sequential()
|
|
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
|
|
model.add(MaxPooling2D((2, 2)))
|
|
model.add(Conv2D(64, (3, 3), activation='relu'))
|
|
model.add(MaxPooling2D((2, 2)))
|
|
model.add(Conv2D(64, (3, 3), activation='relu'))
|
|
model.add(Flatten())
|
|
model.add(Dense(64, activation='relu'))
|
|
model.add(Dropout(dropout_rate))
|
|
model.add(Dense(1, activation='sigmoid'))
|
|
return model
|
|
|
|
|
|
def load_previous_weights(model, fold_number):
|
|
weights_file = f'model_weights/model_fold_{fold_number}.weights.h5'
|
|
if os.path.exists(weights_file):
|
|
model.load_weights(weights_file)
|
|
print(f"Loaded weights from {weights_file}")
|
|
else:
|
|
print("No previous weights found.")
|
|
|
|
|
|
def save_updated_weights(model, fold_number, val_accuracy, best_accuracy):
|
|
weights_file = f'model_weights/model_fold_{fold_number}.weights.h5'
|
|
if val_accuracy > best_accuracy:
|
|
model.save_weights(weights_file)
|
|
print(f"Saved updated weights to {weights_file} with val_accuracy: {val_accuracy:.4f}")
|
|
return val_accuracy
|
|
else:
|
|
print(f"Did not save weights for fold {fold_number} as val_accuracy {val_accuracy:.4f} is not better than {best_accuracy:.4f}")
|
|
return best_accuracy
|
|
|
|
|
|
kf = KFold(n_splits=4, shuffle=True, random_state=42)
|
|
batch_size = 32
|
|
epochs = 15
|
|
|
|
|
|
accuracy_per_fold = []
|
|
loss_per_fold = []
|
|
|
|
best_accuracies = [0] * kf.get_n_splits()
|
|
|
|
|
|
|
|
for fold_number, (train_index, val_index) in enumerate(kf.split(X), 1):
|
|
X_train, X_val = X[train_index], X[val_index]
|
|
Y_train, Y_val = Y[train_index], Y[val_index]
|
|
|
|
|
|
input_dim = X_train.shape[1:]
|
|
model = build_discriminator(input_dim)
|
|
model.compile(loss='binary_crossentropy', optimizer=Adam(0.0002, 0.5), metrics=['accuracy'])
|
|
|
|
|
|
load_previous_weights(model, fold_number)
|
|
|
|
|
|
early_stopping = EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True)
|
|
|
|
|
|
checkpoint = ModelCheckpoint(filepath=f'best_model_weights/model_fold_{fold_number}.best.weights.h5.keras', monitor='val_accuracy', save_best_only=True, mode='max')
|
|
|
|
|
|
history = model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, verbose=2,
|
|
validation_data=(X_val, Y_val), callbacks=[early_stopping, checkpoint])
|
|
|
|
|
|
average_val_accuracy = np.mean(history.history['val_accuracy'])
|
|
accuracy_per_fold.append(average_val_accuracy)
|
|
average_val_loss = np.mean(history.history['val_loss'])
|
|
loss_per_fold.append(average_val_loss)
|
|
|
|
|
|
best_accuracies[fold_number - 1] = save_updated_weights(model, fold_number, average_val_accuracy, best_accuracies[fold_number - 1])
|
|
|
|
|
|
|
|
print(f'Fold {fold_number} average accuracy: {average_val_accuracy*100:.2f}%')
|
|
|
|
|
|
print(f'Average accuracy across all folds: {np.mean(accuracy_per_fold)*100:.2f}%')
|
|
|
|
|
|
best_model_index = np.argmax(accuracy_per_fold)
|
|
best_model_path = f'best_model_weights/model_fold_{best_model_index + 1}.best.weights.h5.keras'
|
|
model.load_weights(best_model_path)
|
|
|
|
|
|
test_loss, test_accuracy = model.evaluate(np.array([preprocess_image(path) for path in test_image_paths]), np.array(test_labels))
|
|
print(f"\nTest Loss: {test_loss}, Test Accuracy: {test_accuracy}")
|
|
|
|
|
|
predictions = model.predict(np.array([preprocess_image(path) for path in test_image_paths]))
|
|
predicted_labels = (predictions > 0.5).astype(int).flatten()
|
|
|
|
|
|
true_real_correct = np.sum((np.array(test_labels) == 0) & (predicted_labels == 0))
|
|
true_real_incorrect = np.sum((np.array(test_labels) == 0) & (predicted_labels == 1))
|
|
true_fake_correct = np.sum((np.array(test_labels) == 1) & (predicted_labels == 1))
|
|
true_fake_incorrect = np.sum((np.array(test_labels) == 1) & (predicted_labels == 0))
|
|
|
|
print("\nClassification Summary:")
|
|
print(f"Real images correctly classified: {true_real_correct}")
|
|
print(f"Real images incorrectly classified: {true_real_incorrect}")
|
|
print(f"Fake images correctly classified: {true_fake_correct}")
|
|
print(f"Fake images incorrectly classified: {true_fake_incorrect}")
|
|
|
|
|
|
|
|
print("\nClassification Report:")
|
|
print(classification_report(test_labels, predicted_labels, target_names=['Real', 'Fake']))
|
|
|
|
print(model.summary())
|
|
|
|
|
|
|
|
cm = confusion_matrix(test_labels, predicted_labels)
|
|
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Real', 'Fake'])
|
|
disp.plot(cmap=plt.cm.Blues)
|
|
plt.title("Confusion Matrix")
|
|
plt.show()
|
|
|
|
|
|
plt.figure(figsize=(12, 4))
|
|
plt.subplot(1, 2, 1)
|
|
plt.plot(history.history['accuracy'])
|
|
plt.plot(history.history['val_accuracy'])
|
|
plt.title('Model accuracy')
|
|
plt.ylabel('Accuracy')
|
|
plt.xlabel('Epoch')
|
|
plt.legend(['Train', 'Validation'], loc='upper left')
|
|
plt.xticks(np.arange(0, len(history.history['accuracy']), step=1), np.arange(1, len(history.history['accuracy']) + 1, step=1))
|
|
|
|
|
|
|
|
plt.subplot(1, 2, 2)
|
|
plt.plot(history.history['loss'])
|
|
plt.plot(history.history['val_loss'])
|
|
plt.title('Model loss')
|
|
plt.ylabel('Loss')
|
|
plt.xlabel('Epoch')
|
|
plt.legend(['Train', 'Validation'], loc='upper left')
|
|
plt.xticks(np.arange(0, len(history.history['loss']), step=1), np.arange(1, len(history.history['loss']) + 1, step=1))
|
|
|
|
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
plt.figure(figsize=(12, 4))
|
|
plt.subplot(1, 2, 1)
|
|
plt.plot(range(1, kf.get_n_splits() + 1), accuracy_per_fold, marker='o')
|
|
plt.title('Validation Accuracy per Fold')
|
|
plt.xlabel('Fold')
|
|
plt.ylabel('Accuracy')
|
|
|
|
plt.subplot(1, 2, 2)
|
|
plt.plot(range(1, kf.get_n_splits() + 1), loss_per_fold, marker='o')
|
|
plt.title('Validation Loss per Fold')
|
|
plt.xlabel('Fold')
|
|
plt.ylabel('Loss')
|
|
|
|
plt.tight_layout()
|
|
plt
|
|
|
|
|
|
|