Image Classification
Keras
File size: 10,665 Bytes
0f1701c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# -*- coding: utf-8 -*-
"""

Created on Sat May 18 16:15:32 2024

@author: litav

"""

# -*- coding: utf-8 -*-
"""

Created on Sat May 18 16:15:32 2024

@author: litav

"""


#dropout 0.5
# Set parameters for cross-validation
#kf = KFold(n_splits=4, shuffle=True, random_state=42)
#batch_size = 64
#epochs = 15
#Average accuracy across all folds: 78.56%
#Test Loss: 0.49228477478027344, Test Accuracy: 0.7706093192100525
#Classification Summary:
#Real images correctly classified: 107
#Real images incorrectly classified: 32
#Fake images correctly classified: 108
#Fake images incorrectly classified: 32
#Classification Report:
#              precision    recall  f1-score   support
#
#        Real       0.77      0.77      0.77       139
#        Fake       0.77      0.77      0.77       140



import numpy as np
import tensorflow as tf
import random
import os
import pandas as pd
import cv2
import matplotlib.pyplot as plt
from sklearn.model_selection import KFold
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import Sequential
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
from tensorflow.keras.layers import Dropout
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from sklearn.metrics import precision_score, recall_score, f1_score, classification_report


# Suppress iCCP warning
import warnings
warnings.filterwarnings("ignore", category=UserWarning, message=".*iCCP:.*")

# Define data paths
train_real_folder = 'datasets/training_set/real/'
train_fake_folder = 'datasets/training_set/fake/'
test_real_folder = 'datasets/test_set/real/'
test_fake_folder = 'datasets/test_set/fake/'

# Load train image paths and labels
train_image_paths = []
train_labels = []

# Load train_real image paths and labels
for filename in os.listdir(train_real_folder):
    image_path = os.path.join(train_real_folder, filename)
    label = 0  # Real images have label 0
    train_image_paths.append(image_path)
    train_labels.append(label)

# Load train_fake image paths and labels
for filename in os.listdir(train_fake_folder):
    image_path = os.path.join(train_fake_folder, filename)
    label = 1  # Fake images have label 1
    train_image_paths.append(image_path)
    train_labels.append(label)

# Load test image paths and labels
test_image_paths = []
test_labels = []

# Load test_real image paths and labels
for filename in os.listdir(test_real_folder):
    image_path = os.path.join(test_real_folder, filename)
    label = 0  # Assuming test real images are all real (label 0)
    test_image_paths.append(image_path)
    test_labels.append(label)

# Load test_fake image paths and labels
for filename in os.listdir(test_fake_folder):
    image_path = os.path.join(test_fake_folder, filename)
    label = 1  # Assuming test fake images are all fake (label 1)
    test_image_paths.append(image_path)
    test_labels.append(label)

# Create DataFrames
train_dataset = pd.DataFrame({'image_path': train_image_paths, 'label': train_labels})
test_dataset = pd.DataFrame({'image_path': test_image_paths, 'label': test_labels})

# Function to preprocess images
def preprocess_image(image_path):
    """Loads, resizes, and normalizes an image."""
    image = cv2.imread(image_path)
    resized_image = cv2.resize(image, (128, 128))  # Target size defined here
    normalized_image = resized_image.astype(np.float32) / 255.0
    return normalized_image

# Preprocess all images and convert labels to numpy arrays
X = np.array([preprocess_image(path) for path in train_image_paths])
Y = np.array(train_labels)

# Define discriminator network
def build_discriminator(input_shape, dropout_rate=0.5):
    model = Sequential()
    model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(Flatten())
    model.add(Dense(64, activation='relu'))
    model.add(Dropout(dropout_rate))  # Adding dropout layer
    model.add(Dense(1, activation='sigmoid'))
    return model

# Function to check if previous weights exist
def load_previous_weights(model, fold_number):
    weights_file = f'model_weights/model_fold_{fold_number}.weights.h5'
    if os.path.exists(weights_file):
        model.load_weights(weights_file)
        print(f"Loaded weights from {weights_file}")
    else:
        print("No previous weights found.")

# Function to save weights if current accuracy is higher
def save_updated_weights(model, fold_number, val_accuracy, best_accuracy):
    weights_file = f'model_weights/model_fold_{fold_number}.weights.h5'
    if val_accuracy > best_accuracy:
        model.save_weights(weights_file)
        print(f"Saved updated weights to {weights_file} with val_accuracy: {val_accuracy:.4f}")
        return val_accuracy
    else:
        print(f"Did not save weights for fold {fold_number} as val_accuracy {val_accuracy:.4f} is not better than {best_accuracy:.4f}")
        return best_accuracy

# Set parameters for cross-validation
kf = KFold(n_splits=4, shuffle=True, random_state=42)
batch_size = 32
epochs = 15

# Lists to store accuracy and loss for each fold
accuracy_per_fold = []
loss_per_fold = []
# Store the best accuracies for each fold
best_accuracies = [0] * kf.get_n_splits()


# Perform K-Fold Cross-Validation
for fold_number, (train_index, val_index) in enumerate(kf.split(X), 1):
    X_train, X_val = X[train_index], X[val_index]
    Y_train, Y_val = Y[train_index], Y[val_index]
    
    # Create and compile model
    input_dim = X_train.shape[1:]  # Dimensionality of the input images
    model = build_discriminator(input_dim)
    model.compile(loss='binary_crossentropy', optimizer=Adam(0.0002, 0.5), metrics=['accuracy'])
    
     # Load previous weights if they exist
    load_previous_weights(model, fold_number)
    
    # Define Early Stopping callback
    early_stopping = EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True)
    
    # Define ModelCheckpoint callback to save the best weights
    checkpoint = ModelCheckpoint(filepath=f'best_model_weights/model_fold_{fold_number}.best.weights.h5.keras', monitor='val_accuracy', save_best_only=True, mode='max')
    
    # Train the model with the callbacks
    history = model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, verbose=2, 
                        validation_data=(X_val, Y_val), callbacks=[early_stopping, checkpoint])
    
    # Store the accuracy and loss for this folds
    average_val_accuracy = np.mean(history.history['val_accuracy'])
    accuracy_per_fold.append(average_val_accuracy)
    average_val_loss = np.mean(history.history['val_loss'])
    loss_per_fold.append(average_val_loss)
  
    # Save updated weights if accuracy is high
    best_accuracies[fold_number - 1] = save_updated_weights(model, fold_number, average_val_accuracy, best_accuracies[fold_number - 1])
 
    
    # Print fold accuracy
    print(f'Fold {fold_number} average accuracy: {average_val_accuracy*100:.2f}%')

# Print average accuracy across all folds
print(f'Average accuracy across all folds: {np.mean(accuracy_per_fold)*100:.2f}%')

# Load the model weights of the best model
best_model_index = np.argmax(accuracy_per_fold)
best_model_path = f'best_model_weights/model_fold_{best_model_index + 1}.best.weights.h5.keras'
model.load_weights(best_model_path)

# Evaluate the preprocessed test images using the best model
test_loss, test_accuracy = model.evaluate(np.array([preprocess_image(path) for path in test_image_paths]), np.array(test_labels))
print(f"\nTest Loss: {test_loss}, Test Accuracy: {test_accuracy}")

# Predict labels for the test set using the best model
predictions = model.predict(np.array([preprocess_image(path) for path in test_image_paths]))
predicted_labels = (predictions > 0.5).astype(int).flatten()

# Summarize the classification results
true_real_correct = np.sum((np.array(test_labels) == 0) & (predicted_labels == 0))
true_real_incorrect = np.sum((np.array(test_labels) == 0) & (predicted_labels == 1))
true_fake_correct = np.sum((np.array(test_labels) == 1) & (predicted_labels == 1))
true_fake_incorrect = np.sum((np.array(test_labels) == 1) & (predicted_labels == 0))

print("\nClassification Summary:")
print(f"Real images correctly classified: {true_real_correct}")
print(f"Real images incorrectly classified: {true_real_incorrect}")
print(f"Fake images correctly classified: {true_fake_correct}")
print(f"Fake images incorrectly classified: {true_fake_incorrect}")


# Print detailed classification report
print("\nClassification Report:")
print(classification_report(test_labels, predicted_labels, target_names=['Real', 'Fake']))

print(model.summary())


# Plot confusion matrix
cm = confusion_matrix(test_labels, predicted_labels)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Real', 'Fake'])
disp.plot(cmap=plt.cm.Blues)
plt.title("Confusion Matrix")
plt.show()

# Plot training & validation accuracy values
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.xticks(np.arange(0, len(history.history['accuracy']), step=1), np.arange(1, len(history.history['accuracy']) + 1, step=1))


# Plot training & validation loss values
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.xticks(np.arange(0, len(history.history['loss']), step=1), np.arange(1, len(history.history['loss']) + 1, step=1))


plt.tight_layout()
plt.show()

# Plot validation accuracy and loss per fold
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(range(1, kf.get_n_splits() + 1), accuracy_per_fold, marker='o')
plt.title('Validation Accuracy per Fold')
plt.xlabel('Fold')
plt.ylabel('Accuracy')

plt.subplot(1, 2, 2)
plt.plot(range(1, kf.get_n_splits() + 1), loss_per_fold, marker='o')
plt.title('Validation Loss per Fold')
plt.xlabel('Fold')
plt.ylabel('Loss')

plt.tight_layout()
plt