receipt-core-model

This model is a fine-tuned version of DanSarm/receipt-core-model on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2194

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1000

Training results

Training Loss Epoch Step Validation Loss
0.1872 1.0 36 0.8766
0.1235 2.0 72 0.9059
0.0904 3.0 108 0.9360
0.0762 4.0 144 0.8768
0.0652 5.0 180 0.9361
0.054 6.0 216 0.9305
0.047 7.0 252 0.9453
0.0427 8.0 288 1.0083
0.0375 9.0 324 1.0142
0.0317 10.0 360 1.0458
0.0303 11.0 396 1.0515
0.0283 12.0 432 1.0791
0.0259 13.0 468 1.0594
0.0236 14.0 504 1.1078
0.0213 15.0 540 1.0250
0.0194 16.0 576 1.0492
0.0158 17.0 612 1.0782
0.016 18.0 648 1.1181
0.0135 19.0 684 1.1222
0.0138 20.0 720 1.1314
0.013 21.0 756 1.1197
0.0106 22.0 792 1.1216
0.0106 23.0 828 1.1382
0.0105 24.0 864 1.1542
0.0084 25.0 900 1.1758
0.0078 26.0 936 1.1630
0.0071 27.0 972 1.1524
0.007 28.0 1008 1.1615
0.0049 29.0 1044 1.1673
0.0062 30.0 1080 1.1623
0.0057 31.0 1116 1.1709
0.0046 32.0 1152 1.1976
0.0043 33.0 1188 1.2217
0.0035 34.0 1224 1.1863
0.0051 35.0 1260 1.2208
0.006 36.0 1296 1.1681
0.0044 37.0 1332 1.1783
0.0053 38.0 1368 1.1821
0.0049 39.0 1404 1.1724
0.0042 40.0 1440 1.1936
0.0031 41.0 1476 1.2066
0.0031 42.0 1512 1.2156
0.0039 43.0 1548 1.2054
0.0026 44.0 1584 1.2000
0.0028 45.0 1620 1.2259
0.0021 46.0 1656 1.2244
0.0026 47.0 1692 1.2218
0.0037 48.0 1728 1.2165
0.003 49.0 1764 1.2012
0.0021 50.0 1800 1.1950
0.0026 51.0 1836 1.2444
0.0024 52.0 1872 1.2066
0.0023 53.0 1908 1.2075
0.002 54.0 1944 1.2476
0.0016 55.0 1980 1.2365
0.0016 56.0 2016 1.2422
0.0014 57.0 2052 1.2420
0.0013 58.0 2088 1.2246
0.002 59.0 2124 1.2482
0.0014 60.0 2160 1.2752
0.0014 61.0 2196 1.2494
0.0013 62.0 2232 1.2648
0.0018 63.0 2268 1.2743
0.0027 64.0 2304 1.2162
0.0019 65.0 2340 1.2315
0.0016 66.0 2376 1.2573
0.0012 67.0 2412 1.2511
0.0018 68.0 2448 1.2632
0.0022 69.0 2484 1.2582
0.0015 70.0 2520 1.2676
0.0011 71.0 2556 1.2798
0.002 72.0 2592 1.2352
0.0012 73.0 2628 1.2430
0.0012 74.0 2664 1.2731
0.001 75.0 2700 1.2773
0.0009 76.0 2736 1.2506
0.001 77.0 2772 1.2479
0.0008 78.0 2808 1.2521
0.0008 79.0 2844 1.2630
0.0005 80.0 2880 1.2725
0.0009 81.0 2916 1.2539
0.0005 82.0 2952 1.2643
0.0007 83.0 2988 1.2722
0.001 84.0 3024 1.2690
0.0007 85.0 3060 1.2914
0.0006 86.0 3096 1.2911
0.0007 87.0 3132 1.2977
0.0007 88.0 3168 1.3432
0.0008 89.0 3204 1.3392
0.001 90.0 3240 1.2964
0.0023 91.0 3276 1.2660
0.0019 92.0 3312 1.2739
0.0017 93.0 3348 1.2968
0.0017 94.0 3384 1.3048
0.0014 95.0 3420 1.3139
0.0017 96.0 3456 1.3031
0.0012 97.0 3492 1.2952
0.0014 98.0 3528 1.3281
0.0021 99.0 3564 1.3087
0.0024 100.0 3600 1.2122
0.0028 101.0 3636 1.2194

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
32
Safetensors
Model size
223M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for DanSarm/receipt-core-model

Unable to build the model tree, the base model loops to the model itself. Learn more.