receipt-core-model
This model is a fine-tuned version of DanSarm/receipt-core-model on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2194
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1872 | 1.0 | 36 | 0.8766 |
0.1235 | 2.0 | 72 | 0.9059 |
0.0904 | 3.0 | 108 | 0.9360 |
0.0762 | 4.0 | 144 | 0.8768 |
0.0652 | 5.0 | 180 | 0.9361 |
0.054 | 6.0 | 216 | 0.9305 |
0.047 | 7.0 | 252 | 0.9453 |
0.0427 | 8.0 | 288 | 1.0083 |
0.0375 | 9.0 | 324 | 1.0142 |
0.0317 | 10.0 | 360 | 1.0458 |
0.0303 | 11.0 | 396 | 1.0515 |
0.0283 | 12.0 | 432 | 1.0791 |
0.0259 | 13.0 | 468 | 1.0594 |
0.0236 | 14.0 | 504 | 1.1078 |
0.0213 | 15.0 | 540 | 1.0250 |
0.0194 | 16.0 | 576 | 1.0492 |
0.0158 | 17.0 | 612 | 1.0782 |
0.016 | 18.0 | 648 | 1.1181 |
0.0135 | 19.0 | 684 | 1.1222 |
0.0138 | 20.0 | 720 | 1.1314 |
0.013 | 21.0 | 756 | 1.1197 |
0.0106 | 22.0 | 792 | 1.1216 |
0.0106 | 23.0 | 828 | 1.1382 |
0.0105 | 24.0 | 864 | 1.1542 |
0.0084 | 25.0 | 900 | 1.1758 |
0.0078 | 26.0 | 936 | 1.1630 |
0.0071 | 27.0 | 972 | 1.1524 |
0.007 | 28.0 | 1008 | 1.1615 |
0.0049 | 29.0 | 1044 | 1.1673 |
0.0062 | 30.0 | 1080 | 1.1623 |
0.0057 | 31.0 | 1116 | 1.1709 |
0.0046 | 32.0 | 1152 | 1.1976 |
0.0043 | 33.0 | 1188 | 1.2217 |
0.0035 | 34.0 | 1224 | 1.1863 |
0.0051 | 35.0 | 1260 | 1.2208 |
0.006 | 36.0 | 1296 | 1.1681 |
0.0044 | 37.0 | 1332 | 1.1783 |
0.0053 | 38.0 | 1368 | 1.1821 |
0.0049 | 39.0 | 1404 | 1.1724 |
0.0042 | 40.0 | 1440 | 1.1936 |
0.0031 | 41.0 | 1476 | 1.2066 |
0.0031 | 42.0 | 1512 | 1.2156 |
0.0039 | 43.0 | 1548 | 1.2054 |
0.0026 | 44.0 | 1584 | 1.2000 |
0.0028 | 45.0 | 1620 | 1.2259 |
0.0021 | 46.0 | 1656 | 1.2244 |
0.0026 | 47.0 | 1692 | 1.2218 |
0.0037 | 48.0 | 1728 | 1.2165 |
0.003 | 49.0 | 1764 | 1.2012 |
0.0021 | 50.0 | 1800 | 1.1950 |
0.0026 | 51.0 | 1836 | 1.2444 |
0.0024 | 52.0 | 1872 | 1.2066 |
0.0023 | 53.0 | 1908 | 1.2075 |
0.002 | 54.0 | 1944 | 1.2476 |
0.0016 | 55.0 | 1980 | 1.2365 |
0.0016 | 56.0 | 2016 | 1.2422 |
0.0014 | 57.0 | 2052 | 1.2420 |
0.0013 | 58.0 | 2088 | 1.2246 |
0.002 | 59.0 | 2124 | 1.2482 |
0.0014 | 60.0 | 2160 | 1.2752 |
0.0014 | 61.0 | 2196 | 1.2494 |
0.0013 | 62.0 | 2232 | 1.2648 |
0.0018 | 63.0 | 2268 | 1.2743 |
0.0027 | 64.0 | 2304 | 1.2162 |
0.0019 | 65.0 | 2340 | 1.2315 |
0.0016 | 66.0 | 2376 | 1.2573 |
0.0012 | 67.0 | 2412 | 1.2511 |
0.0018 | 68.0 | 2448 | 1.2632 |
0.0022 | 69.0 | 2484 | 1.2582 |
0.0015 | 70.0 | 2520 | 1.2676 |
0.0011 | 71.0 | 2556 | 1.2798 |
0.002 | 72.0 | 2592 | 1.2352 |
0.0012 | 73.0 | 2628 | 1.2430 |
0.0012 | 74.0 | 2664 | 1.2731 |
0.001 | 75.0 | 2700 | 1.2773 |
0.0009 | 76.0 | 2736 | 1.2506 |
0.001 | 77.0 | 2772 | 1.2479 |
0.0008 | 78.0 | 2808 | 1.2521 |
0.0008 | 79.0 | 2844 | 1.2630 |
0.0005 | 80.0 | 2880 | 1.2725 |
0.0009 | 81.0 | 2916 | 1.2539 |
0.0005 | 82.0 | 2952 | 1.2643 |
0.0007 | 83.0 | 2988 | 1.2722 |
0.001 | 84.0 | 3024 | 1.2690 |
0.0007 | 85.0 | 3060 | 1.2914 |
0.0006 | 86.0 | 3096 | 1.2911 |
0.0007 | 87.0 | 3132 | 1.2977 |
0.0007 | 88.0 | 3168 | 1.3432 |
0.0008 | 89.0 | 3204 | 1.3392 |
0.001 | 90.0 | 3240 | 1.2964 |
0.0023 | 91.0 | 3276 | 1.2660 |
0.0019 | 92.0 | 3312 | 1.2739 |
0.0017 | 93.0 | 3348 | 1.2968 |
0.0017 | 94.0 | 3384 | 1.3048 |
0.0014 | 95.0 | 3420 | 1.3139 |
0.0017 | 96.0 | 3456 | 1.3031 |
0.0012 | 97.0 | 3492 | 1.2952 |
0.0014 | 98.0 | 3528 | 1.3281 |
0.0021 | 99.0 | 3564 | 1.3087 |
0.0024 | 100.0 | 3600 | 1.2122 |
0.0028 | 101.0 | 3636 | 1.2194 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 32
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for DanSarm/receipt-core-model
Unable to build the model tree, the base model loops to the model itself. Learn more.