Create Quantum_optimization.py
Browse files- Quantum_optimization.py +83 -0
Quantum_optimization.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from qiskit import Aer
|
3 |
+
from qiskit import QuantumCircuit
|
4 |
+
from qiskit.algorithms import QAOA
|
5 |
+
from qiskit_optimization.algorithms import MinimumEigenOptimizer
|
6 |
+
from qiskit_optimization import QuadraticProgram
|
7 |
+
from qiskit.aqua.operators import Z, X
|
8 |
+
from qiskit.aqua.algorithms import Grover
|
9 |
+
from qiskit import execute
|
10 |
+
|
11 |
+
# Quantum Optimization: MaxCut Problem
|
12 |
+
def create_maxcut_problem(num_nodes, edges, weights):
|
13 |
+
"""
|
14 |
+
Creates a QuadraticProgram for the MaxCut optimization problem.
|
15 |
+
:param num_nodes: number of nodes in the graph
|
16 |
+
:param edges: list of tuples representing edges
|
17 |
+
:param weights: dictionary of edge weights
|
18 |
+
:return: QuadraticProgram instance
|
19 |
+
"""
|
20 |
+
qp = QuadraticProgram()
|
21 |
+
|
22 |
+
# Define binary variables for each node
|
23 |
+
for i in range(num_nodes):
|
24 |
+
qp.binary_var(f'x{i}')
|
25 |
+
|
26 |
+
# Set the quadratic objective function based on edges and weights
|
27 |
+
for i, j in edges:
|
28 |
+
weight = weights.get((i, j), 1) # Default weight is 1 if not specified
|
29 |
+
qp.minimize(constant=0, linear=[], quadratic={(f'x{i}', f'x{j}'): weight})
|
30 |
+
|
31 |
+
return qp
|
32 |
+
|
33 |
+
def quantum_optimization(qp):
|
34 |
+
"""
|
35 |
+
Performs quantum optimization using QAOA (Quantum Approximate Optimization Algorithm).
|
36 |
+
:param qp: QuadraticProgram to optimize
|
37 |
+
:return: Optimal solution and its value
|
38 |
+
"""
|
39 |
+
# Set up the quantum instance and QAOA
|
40 |
+
backend = Aer.get_backend('statevector_simulator')
|
41 |
+
qaoa = QAOA(quantum_instance=backend, reps=3) # Increase reps for better optimization
|
42 |
+
|
43 |
+
# Use the MinimumEigenOptimizer to solve the problem with QAOA
|
44 |
+
optimizer = MinimumEigenOptimizer(qaoa)
|
45 |
+
result = optimizer.solve(qp)
|
46 |
+
|
47 |
+
return result
|
48 |
+
|
49 |
+
def quantum_machine_learning(X_train, y_train, X_test, y_test):
|
50 |
+
"""
|
51 |
+
Simulate a quantum-enhanced machine learning model by performing quantum optimization
|
52 |
+
alongside classical machine learning models.
|
53 |
+
:param X_train: training data features
|
54 |
+
:param y_train: training data labels
|
55 |
+
:param X_test: test data features
|
56 |
+
:param y_test: test data labels
|
57 |
+
:return: SVM model score and quantum optimization result
|
58 |
+
"""
|
59 |
+
# Classical SVM as a baseline for performance comparison
|
60 |
+
from sklearn.svm import SVC
|
61 |
+
clf = SVC(kernel='linear')
|
62 |
+
clf.fit(X_train, y_train)
|
63 |
+
score = clf.score(X_test, y_test)
|
64 |
+
|
65 |
+
# Perform Quantum Optimization (MaxCut)
|
66 |
+
maxcut_problem = create_maxcut_problem(4, [(0, 1), (1, 2), (2, 3), (3, 0)], {(0, 1): 1, (1, 2): 1, (2, 3): 1, (3, 0): 1})
|
67 |
+
quantum_result = quantum_optimization(maxcut_problem)
|
68 |
+
|
69 |
+
return score, quantum_result
|
70 |
+
|
71 |
+
# Example to create a problem and solve it
|
72 |
+
if __name__ == '__main__':
|
73 |
+
# Sample data for testing the quantum optimization integration
|
74 |
+
X_train = np.random.rand(100, 5)
|
75 |
+
y_train = np.random.choice([0, 1], size=100)
|
76 |
+
X_test = np.random.rand(50, 5)
|
77 |
+
y_test = np.random.choice([0, 1], size=50)
|
78 |
+
|
79 |
+
# Simulate Quantum-enhanced Machine Learning (using SVM and Quantum Optimization)
|
80 |
+
accuracy, quantum_result = quantum_machine_learning(X_train, y_train, X_test, y_test)
|
81 |
+
|
82 |
+
print(f"Accuracy of SVM model: {accuracy:.2f}")
|
83 |
+
print(f"Quantum Optimization Result: {quantum_result}")
|