Adapters
DaddyAloha commited on
Commit
14c1536
·
verified ·
1 Parent(s): dfd1b6d

Create Quantum_optimization.py

Browse files
Files changed (1) hide show
  1. Quantum_optimization.py +83 -0
Quantum_optimization.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from qiskit import Aer
3
+ from qiskit import QuantumCircuit
4
+ from qiskit.algorithms import QAOA
5
+ from qiskit_optimization.algorithms import MinimumEigenOptimizer
6
+ from qiskit_optimization import QuadraticProgram
7
+ from qiskit.aqua.operators import Z, X
8
+ from qiskit.aqua.algorithms import Grover
9
+ from qiskit import execute
10
+
11
+ # Quantum Optimization: MaxCut Problem
12
+ def create_maxcut_problem(num_nodes, edges, weights):
13
+ """
14
+ Creates a QuadraticProgram for the MaxCut optimization problem.
15
+ :param num_nodes: number of nodes in the graph
16
+ :param edges: list of tuples representing edges
17
+ :param weights: dictionary of edge weights
18
+ :return: QuadraticProgram instance
19
+ """
20
+ qp = QuadraticProgram()
21
+
22
+ # Define binary variables for each node
23
+ for i in range(num_nodes):
24
+ qp.binary_var(f'x{i}')
25
+
26
+ # Set the quadratic objective function based on edges and weights
27
+ for i, j in edges:
28
+ weight = weights.get((i, j), 1) # Default weight is 1 if not specified
29
+ qp.minimize(constant=0, linear=[], quadratic={(f'x{i}', f'x{j}'): weight})
30
+
31
+ return qp
32
+
33
+ def quantum_optimization(qp):
34
+ """
35
+ Performs quantum optimization using QAOA (Quantum Approximate Optimization Algorithm).
36
+ :param qp: QuadraticProgram to optimize
37
+ :return: Optimal solution and its value
38
+ """
39
+ # Set up the quantum instance and QAOA
40
+ backend = Aer.get_backend('statevector_simulator')
41
+ qaoa = QAOA(quantum_instance=backend, reps=3) # Increase reps for better optimization
42
+
43
+ # Use the MinimumEigenOptimizer to solve the problem with QAOA
44
+ optimizer = MinimumEigenOptimizer(qaoa)
45
+ result = optimizer.solve(qp)
46
+
47
+ return result
48
+
49
+ def quantum_machine_learning(X_train, y_train, X_test, y_test):
50
+ """
51
+ Simulate a quantum-enhanced machine learning model by performing quantum optimization
52
+ alongside classical machine learning models.
53
+ :param X_train: training data features
54
+ :param y_train: training data labels
55
+ :param X_test: test data features
56
+ :param y_test: test data labels
57
+ :return: SVM model score and quantum optimization result
58
+ """
59
+ # Classical SVM as a baseline for performance comparison
60
+ from sklearn.svm import SVC
61
+ clf = SVC(kernel='linear')
62
+ clf.fit(X_train, y_train)
63
+ score = clf.score(X_test, y_test)
64
+
65
+ # Perform Quantum Optimization (MaxCut)
66
+ maxcut_problem = create_maxcut_problem(4, [(0, 1), (1, 2), (2, 3), (3, 0)], {(0, 1): 1, (1, 2): 1, (2, 3): 1, (3, 0): 1})
67
+ quantum_result = quantum_optimization(maxcut_problem)
68
+
69
+ return score, quantum_result
70
+
71
+ # Example to create a problem and solve it
72
+ if __name__ == '__main__':
73
+ # Sample data for testing the quantum optimization integration
74
+ X_train = np.random.rand(100, 5)
75
+ y_train = np.random.choice([0, 1], size=100)
76
+ X_test = np.random.rand(50, 5)
77
+ y_test = np.random.choice([0, 1], size=50)
78
+
79
+ # Simulate Quantum-enhanced Machine Learning (using SVM and Quantum Optimization)
80
+ accuracy, quantum_result = quantum_machine_learning(X_train, y_train, X_test, y_test)
81
+
82
+ print(f"Accuracy of SVM model: {accuracy:.2f}")
83
+ print(f"Quantum Optimization Result: {quantum_result}")