Create quantum_optimization.PY
Browse files- quantum_optimization.PY +46 -0
quantum_optimization.PY
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sQUlearn
|
| 2 |
+
from sQUlearn import Executor, FidelityKernel, ProjectedQuantumKernel
|
| 3 |
+
|
| 4 |
+
# Define a quantum circuit for optimization
|
| 5 |
+
circuit = sQUlearn.Circuit()
|
| 6 |
+
|
| 7 |
+
# Define a QML model using the sQUlearn library
|
| 8 |
+
model = sQUlearn.QMLModel(circuit)
|
| 9 |
+
|
| 10 |
+
# Define a fidelity kernel for optimization
|
| 11 |
+
kernel = FidelityKernel(model)
|
| 12 |
+
|
| 13 |
+
# Define a projected quantum kernel for optimization
|
| 14 |
+
projected_kernel = ProjectedQuantumKernel(model)
|
| 15 |
+
|
| 16 |
+
# Create an executor for executing QML tasks on real quantum computers or simulators
|
| 17 |
+
executor = Executor()
|
| 18 |
+
|
| 19 |
+
# Define a function for optimizing the QML model using the executor
|
| 20 |
+
def optimize_model():
|
| 21 |
+
# Train the QNN on a real quantum backend to enhance result accuracy
|
| 22 |
+
model.train(executor)
|
| 23 |
+
|
| 24 |
+
# Optimize the parameters to effectively counteract systematic errors inherent in the real quantum hardware
|
| 25 |
+
model.optimize_parameters(executor)
|
| 26 |
+
|
| 27 |
+
# Evaluate the Gram matrix on real quantum computers or a simulator backend with automatic session handling
|
| 28 |
+
gram_matrix = executor.evaluate_gram_matrix(model)
|
| 29 |
+
|
| 30 |
+
return gram_matrix
|
| 31 |
+
|
| 32 |
+
# Use the optimized model for quantum AI optimization
|
| 33 |
+
def quantum_ai_optimization():
|
| 34 |
+
# Load the pre-trained adapter model
|
| 35 |
+
from adapters import AutoAdapterModel
|
| 36 |
+
model = AutoAdapterModel.from_pretrained("undefined")
|
| 37 |
+
model.load_adapter("DaddyAloha/Bot-2", set_active=True)
|
| 38 |
+
|
| 39 |
+
# Integrate the sQUlearn library with the adapter model
|
| 40 |
+
quantum_model = sQUlearn.QMLModel(model)
|
| 41 |
+
|
| 42 |
+
# Optimize the quantum model using the executor
|
| 43 |
+
optimized_gram_matrix = optimize_model()
|
| 44 |
+
|
| 45 |
+
# Use the optimized quantum model for AI optimization
|
| 46 |
+
#...
|