Create quantum_optimization.PY
Browse files- quantum_optimization.PY +46 -0
quantum_optimization.PY
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sQUlearn
|
2 |
+
from sQUlearn import Executor, FidelityKernel, ProjectedQuantumKernel
|
3 |
+
|
4 |
+
# Define a quantum circuit for optimization
|
5 |
+
circuit = sQUlearn.Circuit()
|
6 |
+
|
7 |
+
# Define a QML model using the sQUlearn library
|
8 |
+
model = sQUlearn.QMLModel(circuit)
|
9 |
+
|
10 |
+
# Define a fidelity kernel for optimization
|
11 |
+
kernel = FidelityKernel(model)
|
12 |
+
|
13 |
+
# Define a projected quantum kernel for optimization
|
14 |
+
projected_kernel = ProjectedQuantumKernel(model)
|
15 |
+
|
16 |
+
# Create an executor for executing QML tasks on real quantum computers or simulators
|
17 |
+
executor = Executor()
|
18 |
+
|
19 |
+
# Define a function for optimizing the QML model using the executor
|
20 |
+
def optimize_model():
|
21 |
+
# Train the QNN on a real quantum backend to enhance result accuracy
|
22 |
+
model.train(executor)
|
23 |
+
|
24 |
+
# Optimize the parameters to effectively counteract systematic errors inherent in the real quantum hardware
|
25 |
+
model.optimize_parameters(executor)
|
26 |
+
|
27 |
+
# Evaluate the Gram matrix on real quantum computers or a simulator backend with automatic session handling
|
28 |
+
gram_matrix = executor.evaluate_gram_matrix(model)
|
29 |
+
|
30 |
+
return gram_matrix
|
31 |
+
|
32 |
+
# Use the optimized model for quantum AI optimization
|
33 |
+
def quantum_ai_optimization():
|
34 |
+
# Load the pre-trained adapter model
|
35 |
+
from adapters import AutoAdapterModel
|
36 |
+
model = AutoAdapterModel.from_pretrained("undefined")
|
37 |
+
model.load_adapter("DaddyAloha/Bot-2", set_active=True)
|
38 |
+
|
39 |
+
# Integrate the sQUlearn library with the adapter model
|
40 |
+
quantum_model = sQUlearn.QMLModel(model)
|
41 |
+
|
42 |
+
# Optimize the quantum model using the executor
|
43 |
+
optimized_gram_matrix = optimize_model()
|
44 |
+
|
45 |
+
# Use the optimized quantum model for AI optimization
|
46 |
+
#...
|