|
import numpy as np |
|
from qiskit import Aer |
|
from qiskit import QuantumCircuit |
|
from qiskit.algorithms import QAOA |
|
from qiskit_optimization.algorithms import MinimumEigenOptimizer |
|
from qiskit_optimization import QuadraticProgram |
|
from qiskit.aqua.operators import Z, X |
|
from qiskit.aqua.algorithms import Grover |
|
from qiskit import execute |
|
|
|
|
|
def create_maxcut_problem(num_nodes, edges, weights): |
|
""" |
|
Creates a QuadraticProgram for the MaxCut optimization problem. |
|
:param num_nodes: number of nodes in the graph |
|
:param edges: list of tuples representing edges |
|
:param weights: dictionary of edge weights |
|
:return: QuadraticProgram instance |
|
""" |
|
qp = QuadraticProgram() |
|
|
|
|
|
for i in range(num_nodes): |
|
qp.binary_var(f'x{i}') |
|
|
|
|
|
for i, j in edges: |
|
weight = weights.get((i, j), 1) |
|
qp.minimize(constant=0, linear=[], quadratic={(f'x{i}', f'x{j}'): weight}) |
|
|
|
return qp |
|
|
|
def quantum_optimization(qp): |
|
""" |
|
Performs quantum optimization using QAOA (Quantum Approximate Optimization Algorithm). |
|
:param qp: QuadraticProgram to optimize |
|
:return: Optimal solution and its value |
|
""" |
|
|
|
backend = Aer.get_backend('statevector_simulator') |
|
qaoa = QAOA(quantum_instance=backend, reps=3) |
|
|
|
|
|
optimizer = MinimumEigenOptimizer(qaoa) |
|
result = optimizer.solve(qp) |
|
|
|
return result |
|
|
|
def quantum_machine_learning(X_train, y_train, X_test, y_test): |
|
""" |
|
Simulate a quantum-enhanced machine learning model by performing quantum optimization |
|
alongside classical machine learning models. |
|
:param X_train: training data features |
|
:param y_train: training data labels |
|
:param X_test: test data features |
|
:param y_test: test data labels |
|
:return: SVM model score and quantum optimization result |
|
""" |
|
|
|
from sklearn.svm import SVC |
|
clf = SVC(kernel='linear') |
|
clf.fit(X_train, y_train) |
|
score = clf.score(X_test, y_test) |
|
|
|
|
|
maxcut_problem = create_maxcut_problem(4, [(0, 1), (1, 2), (2, 3), (3, 0)], {(0, 1): 1, (1, 2): 1, (2, 3): 1, (3, 0): 1}) |
|
quantum_result = quantum_optimization(maxcut_problem) |
|
|
|
return score, quantum_result |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
X_train = np.random.rand(100, 5) |
|
y_train = np.random.choice([0, 1], size=100) |
|
X_test = np.random.rand(50, 5) |
|
y_test = np.random.choice([0, 1], size=50) |
|
|
|
|
|
accuracy, quantum_result = quantum_machine_learning(X_train, y_train, X_test, y_test) |
|
|
|
print(f"Accuracy of SVM model: {accuracy:.2f}") |
|
print(f"Quantum Optimization Result: {quantum_result}") |