|
from typing import Dict, Any |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from accelerate import init_empty_weights, load_checkpoint_and_dispatch |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, model_dir: str, **kwargs): |
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
model_dir, trust_remote_code=True |
|
) |
|
|
|
|
|
with init_empty_weights(): |
|
base = AutoModelForCausalLM.from_pretrained( |
|
model_dir, |
|
torch_dtype=torch.float16, |
|
trust_remote_code=True, |
|
) |
|
|
|
|
|
self.model = load_checkpoint_and_dispatch( |
|
base, |
|
checkpoint=model_dir, |
|
device_map="auto", |
|
dtype=torch.float16, |
|
).eval() |
|
|
|
|
|
self.first_device = next(self.model.parameters()).device |
|
torch.cuda.set_device(self.first_device) |
|
|
|
|
|
self.generation_kwargs = dict( |
|
max_new_tokens=512, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9, |
|
) |
|
|
|
|
|
print(">>> device_map =", self.model.hf_device_map) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: |
|
prompt = data["inputs"] |
|
|
|
|
|
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.first_device) |
|
|
|
with torch.inference_mode(): |
|
output_ids = self.model.generate(**inputs, **self.generation_kwargs) |
|
|
|
return { |
|
"generated_text": self.tokenizer.decode( |
|
output_ids[0], skip_special_tokens=True |
|
) |
|
} |
|
|