DMind-1 / handler.py
yuzhe's picture
Update handler.py
c27e6f6 verified
raw
history blame
1.94 kB
from typing import Dict, Any
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
class EndpointHandler:
def __init__(self, model_dir: str, **kwargs):
self.tokenizer = AutoTokenizer.from_pretrained(
model_dir, trust_remote_code=True
)
# ① 构空壳模型
with init_empty_weights():
base = AutoModelForCausalLM.from_pretrained(
model_dir,
torch_dtype=torch.float16,
trust_remote_code=True,
)
# ② 分片加载到多 GPU
self.model = load_checkpoint_and_dispatch(
base,
checkpoint=model_dir,
device_map="auto",
dtype=torch.float16,
).eval()
# ③ 记录 embedding 所在 GPU,并把 **默认 GPU** 也切过去
self.first_device = next(self.model.parameters()).device
torch.cuda.set_device(self.first_device) # ← 关键一行
# ④ 生成参数
self.generation_kwargs = dict(
max_new_tokens=512, # 🛈 2 k token 占显存极高,先压到 512 再逐步调
do_sample=True,
temperature=0.7,
top_p=0.9,
)
# (可选)在日志中打印设备映射,方便后续排查
print(">>> device_map =", self.model.hf_device_map)
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
prompt = data["inputs"]
# 把 *所有* 输入张量放到 first_device
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.first_device)
with torch.inference_mode():
output_ids = self.model.generate(**inputs, **self.generation_kwargs)
return {
"generated_text": self.tokenizer.decode(
output_ids[0], skip_special_tokens=True
)
}