from typing import Dict, Any import torch from transformers import AutoTokenizer, AutoModelForCausalLM from accelerate import init_empty_weights, load_checkpoint_and_dispatch class EndpointHandler: def __init__(self, model_dir: str, **kwargs): self.tokenizer = AutoTokenizer.from_pretrained( model_dir, trust_remote_code=True ) # ① 构空壳模型 with init_empty_weights(): base = AutoModelForCausalLM.from_pretrained( model_dir, torch_dtype=torch.float16, trust_remote_code=True, ) # ② 分片加载到多 GPU self.model = load_checkpoint_and_dispatch( base, checkpoint=model_dir, device_map="auto", dtype=torch.float16, ).eval() # ③ 记录 embedding 所在 GPU,并把 **默认 GPU** 也切过去 self.first_device = next(self.model.parameters()).device torch.cuda.set_device(self.first_device) # ← 关键一行 # ④ 生成参数 self.generation_kwargs = dict( max_new_tokens=512, # 🛈 2 k token 占显存极高,先压到 512 再逐步调 do_sample=True, temperature=0.7, top_p=0.9, ) # (可选)在日志中打印设备映射,方便后续排查 print(">>> device_map =", self.model.hf_device_map) def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: prompt = data["inputs"] # 把 *所有* 输入张量放到 first_device inputs = self.tokenizer(prompt, return_tensors="pt").to(self.first_device) with torch.inference_mode(): output_ids = self.model.generate(**inputs, **self.generation_kwargs) return { "generated_text": self.tokenizer.decode( output_ids[0], skip_special_tokens=True ) }