DMind-1 / handler.py
yuzhe's picture
Update handler.py
668e04f verified
raw
history blame
2.09 kB
# handler.py —— 放在模型仓库根目录
from typing import Dict, Any
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
class EndpointHandler:
"""
Hugging Face Inference Endpoints 约定的自定义入口:
• __init__(model_dir, **kwargs) —— 加载模型
• __call__(inputs: Dict) -> Dict —— 处理一次请求
"""
def __init__(self, model_dir: str, **kwargs):
# 1️⃣ Tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
model_dir, trust_remote_code=True
)
# 2️⃣ 构建“空壳”模型(不占显存)
with init_empty_weights():
base_model = AutoModelForCausalLM.from_pretrained(
model_dir,
torch_dtype=torch.float16,
trust_remote_code=True,
)
# 3️⃣ 把权重切片加载到两张 GPU
self.model = load_checkpoint_and_dispatch(
base_model,
checkpoint=model_dir,
device_map="auto", # 自动分层到 cuda:0 / cuda:1
dtype=torch.float16,
)
# 4️⃣ 生成时常用的生成参数
self.generation_kwargs = dict(
max_new_tokens=2048,
do_sample=True,
temperature=0.7,
top_p=0.9,
)
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
prompt = data["inputs"]
# ① 自动抓 embedding 所在 GPU
first_device = next(self.model.parameters()).device
inputs = self.tokenizer(prompt, return_tensors="pt").to(first_device)
# ② 生成(其余逻辑不变)
with torch.inference_mode():
output_ids = self.model.generate(
**inputs,
**self.generation_kwargs,
)
return {
"generated_text": self.tokenizer.decode(
output_ids[0], skip_special_tokens=True
)
}