# handler.py —— 放在模型仓库根目录 from typing import Dict, Any import torch from transformers import AutoTokenizer, AutoModelForCausalLM from accelerate import init_empty_weights, load_checkpoint_and_dispatch class EndpointHandler: """ Hugging Face Inference Endpoints 约定的自定义入口: • __init__(model_dir, **kwargs) —— 加载模型 • __call__(inputs: Dict) -> Dict —— 处理一次请求 """ def __init__(self, model_dir: str, **kwargs): # 1️⃣ Tokenizer self.tokenizer = AutoTokenizer.from_pretrained( model_dir, trust_remote_code=True ) # 2️⃣ 构建“空壳”模型(不占显存) with init_empty_weights(): base_model = AutoModelForCausalLM.from_pretrained( model_dir, torch_dtype=torch.float16, trust_remote_code=True, ) # 3️⃣ 把权重切片加载到两张 GPU self.model = load_checkpoint_and_dispatch( base_model, checkpoint=model_dir, device_map="auto", # 自动分层到 cuda:0 / cuda:1 dtype=torch.float16, ) # 4️⃣ 生成时常用的生成参数 self.generation_kwargs = dict( max_new_tokens=2048, do_sample=True, temperature=0.7, top_p=0.9, ) def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: prompt = data["inputs"] # ① 自动抓 embedding 所在 GPU first_device = next(self.model.parameters()).device inputs = self.tokenizer(prompt, return_tensors="pt").to(first_device) # ② 生成(其余逻辑不变) with torch.inference_mode(): output_ids = self.model.generate( **inputs, **self.generation_kwargs, ) return { "generated_text": self.tokenizer.decode( output_ids[0], skip_special_tokens=True ) }