File size: 10,649 Bytes
2f85384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
856c07e
 
 
 
 
 
 
2f85384
 
cb82e33
 
 
2f85384
cb82e33
 
 
 
b96242a
 
cb82e33
 
407150b
2f85384
cb82e33
faed55b
2f85384
cb82e33
 
2f85384
cb82e33
 
 
2f85384
 
cb82e33
2f85384
 
 
 
 
 
 
 
cb82e33
 
2f85384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
691352e
2f85384
691352e
2f85384
691352e
 
 
 
 
 
 
2f85384
 
 
faed55b
 
 
 
 
2f85384
 
 
 
 
cb82e33
 
03cf08e
 
2f85384
 
cb82e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f85384
cb82e33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
license: mit
language:
- en
- zh
metrics:
- accuracy
base_model:
- Qwen/Qwen3-32B
pipeline_tag: text-generation
library_name: transformers
tags:
- blockchain
- conversational
- web3
- qwen3
# eval_results:
# - task: domain-specific evaluation
#   dataset: DMindAI/DMind_Benchmark
#   metric: normalized web3 score
#   score: 77.44
#   model: DMind-1
#   model_rank: 1 / 24
---

<p align="center">
  <img src="figures/dmind-ai-logo.png" width="300" alt="DMind Logo" />
</p>
<hr>
<div align="center" style="line-height: 1;">
  <a href="https://dmind.ai/" target="_blank" style="margin: 2px;">
    <img alt="DMind Website" src="https://img.shields.io/badge/DMind-Homepage-blue?logo=data:image/svg+xml;base64,)" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://huggingface.co/DMindAI" target="_blank" style="margin: 2px;">
    <img alt="Hugging Face" src="https://img.shields.io/badge/HuggingFace-DMind-ffd21f?color=ffd21f&logo=huggingface" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://x.com/dmind_ai" target="_blank" style="margin: 2px;">
    <img alt="X" src="https://img.shields.io/badge/X-@DMind-1DA1F2?logo=x" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://openrouter.ai/chat" target="_blank" style="margin: 2px;">
    <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DMind--1-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://discord.gg/xxwmPHU3" target="_blank" style="margin: 2px;">
    <img alt="Discord" src="https://img.shields.io/badge/Discord-DMind-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://opensource.org/licenses/MIT" target="_blank" style="margin: 2px;">
    <img alt="Code License: MIT" src="https://img.shields.io/badge/Code%20License-MIT-yellow.svg" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>


## Table of Contents
- [Introduction](#introduction)
- [1. Model Overview](#1-model-overview)
- [2. Evaluation Results](#2-evaluation-results)
- [3. Use Cases](#3-use-cases)
- [4. Quickstart](#4-quickstart)
  - [4.1 Model Downloads](#41-model-downloads)
  - [4.2 OpenRouter API](#42-openrouter-api)
  - [4.3 OpenRouter Web Chat](#43-openrouter-web-chat)
- [License](#license)
- [Contact](#contact)

## Introduction
The rapid growth of Web3 technologies—blockchain, DeFi, and smart contracts—demands specialized AI large language models (LLMs) with precise domain alignment and advanced reasoning capabilities. However, General-purpose LLMs often lack the domain-specific accuracy, nuanced reasoning, and instruction-following aligned with expert expectations. 

To address these limitations, we introduce **DMind-1**, a domain-specialized LLM fine-tuned for the Web3 ecosystem via supervised instruction tuning and reinforcement learning from human feedback (RLHF). Built on a powerful base model, DMind-1 achieves strong improvements in task accuracy, content safety, and expert-aligned interaction, significantly surpassing general-purpose models. DMind-1 represents a robust foundation for intelligent agents in the Web3 ecosystem.

## 1. Model Overview

### DMind-1
DMind-1 is a specialized Web3 expert model built on the Qwen3-32B base. Leveraging a state-of-the-art transformer architecture, it integrates deep domain knowledge through a novel two-stage fine-tuning pipeline, establishing its distinctive strengths in Web3-specific applications.

**Key Points:**
- **Comprehensive Domain Expertise Data**: In the first stage, DMind-1 underwent Supervised Fine-Tuning (SFT) on 13,276 expert-curated knowledge items distilled from 32.7GB of Web3 documentation, covering 8 key subdomains including DeFi, tokenomics, governance, and smart contracts. These data points were extracted and structured by a team of domain experts to ensure both depth and accuracy. To enable efficient and scalable training, we employed Low-Rank Adaptation (LoRA) during the SFT stage, allowing DMind-1 to internalize specialized Web3 knowledge while preserving the general-language capabilities of its base model.


- **Reinforcement Learning from Human Feedback (RLHF)**
To further align the model with expert expectations in realistic interaction scenarios and accuracy, we implemented an RLHF phase composed of:
    - **Reward Model Training**: We trained a domain-specific reward model using preference-ranked outputs collected from human experts across diverse Web3-specific question-answer and interaction scenarios. This model learned to assess which responses best reflect factual accuracy and expert-level reasoning in the Web3 domain.
    - **Policy Optimization with PPO**: Building on the SFT model, we fine-tuned Qwen3-32B using Proximal Policy Optimization (PPO), guided by the trained reward model. The policy network was optimized based on feedback from simulated Web3 dialogue environments, while LoRA ensured resource-efficient parameter updates and significantly reduced compute and memory requirements. This dual-stage approach enabled efficient fine-tuning of a larger model on Web3-specific tasks while achieving high alignment with human intent.


- **Domain-Aligned Reasoning and Interaction**:
DMind-1 exhibits advanced web3-aligned reasoning and interactive capabilities in the following fields:
    - **Natural Dialogue Fluency**: Coherent, context-aware conversations on complex Web3 topics, with strong multi-turn consistency.

    - **Complex Instruction Following**: Reliable execution of multi-step instructions and conditional logic, supporting agent-driven workflows.

    - **Safe and Compliant Content Generation**: Outputs are aligned with domain-specific safety, ethics, and regulatory standards.


## 2. Evaluation Results

![DMind-1 Web3 Performance](figures/normalized-performance-with-price.jpeg)

We evaluate DMind-1 and DMind-1-mini using the [DMind Benchmark](https://huggingface.co/datasets/DMindAI/DMind_Benchmark), a domain-specific evaluation suite designed to assess large language models in the Web3 context. The benchmark includes 1,917 expert-reviewed questions across nine core domain categories, and it features both multiple-choice and open-ended tasks to measure factual knowledge, contextual reasoning, and other abilities.

To complement accuracy metrics, we conducted a **cost-performance analysis** by comparing benchmark scores against publicly available input token prices across 24 leading LLMs. In this evaluation:

- **DMind-1** achieved the highest Web3 score while maintaining one of the lowest token input costs among top-tier models such as Grok 3 and Claude 3.5 Sonnet.

- **DMind-1-mini** ranked second, retaining over 95% of DMind-1’s performance with greater efficiency in latency and compute.

Both models are uniquely positioned in the most favorable region of the score vs. price curve, delivering state-of-the-art Web3 reasoning at significantly lower cost. This balance of quality and efficiency makes the DMind models highly competitive for both research and production use.


## 3. Use Cases
- **Expert-Level Question & Answering**: Provides accurate, context-aware answers on blockchain, DeFi, smart contracts, and related Web3 topics.
- **Compliance-Aware Support**: Assists in drafting or reviewing content within regulatory and legal contexts.
- **Content Generation in Domain**: Produces Web3-specific blog posts, documentation, and tutorials tailored to developers and users.
- **DeFi Strategy Suggestions**: Generates insights and recommendations for yield farming, liquidity provision, and portfolio strategies based on user-provided data.
- **Risk Management**: Suggests strategies aligned with user risk profiles for more informed decision-making in volatile markets.

## 4. Quickstart

### 4.1 Model Downloads

| **Model**      | **Base Model** | **Download**                                                                 |
|:--------------:|:--------------:|:----------------------------------------------------------------------------:|
| DMind-1        | Qwen3-32B      | [Hugging Face Link](https://huggingface.co/DMindAI/DMind-1)            |
| DMind-1-mini   | Qwen3-14B      | [Hugging Face Link](https://huggingface.co/DMindAI/DMind-1-mini)                 |

### 4.2 OpenRouter API

You can access **DMind-1** via the OpenRouter API. Simply specify the desired model in the `model` field of your request payload.

**API Endpoint:**
```
https://openrouter.ai/api/v1/chat/completions
```

**Authentication:**
- Obtain your API key from [OpenRouter](https://openrouter.ai/)
- Include it in the `Authorization` header as `Bearer YOUR_API_KEY`

**Model Identifiers:**
- `dmind-1` — Full-size expert model

**Example Request (Python):**
```python
import requests

headers = {
    "Authorization": "Bearer YOUR_API_KEY",
    "Content-Type": "application/json"
}

data = {
    "model": "dmind-1",
    "messages": [
        {"role": "user", "content": "Explain DeFi in simple terms."}
    ]
}

response = requests.post(
    "https://openrouter.ai/api/v1/chat/completions",
    headers=headers,
    json=data
)
print(response.json())
```

**Example Request (cURL):**
```bash
curl https://openrouter.ai/api/v1/chat/completions \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "dmind-1",
    "messages": [{"role": "user", "content": "What is a smart contract?"}]
  }'
```

**Notes:**
- Replace `YOUR_API_KEY` with your actual OpenRouter API key.
- Change the `model` field to `dmind-1` as needed.
- Both models support the same API structure for easy integration.

### 4.3 OpenRouter Web Chat

You can try **DMind-1** instantly using the [OpenRouter Web Chat](https://openrouter.ai/chat).

- Select your desired model from the dropdown menu (**DMind-1**).
- Enter your prompt and interact with the model in real time.

[![OpenRouter Chat](https://img.shields.io/badge/🤖%20Try%20on-OpenRouter%20Chat-536af5?color=536af5&logoColor=white)](https://openrouter.ai/chat)

## License
- The code repository and model weights for DMind-1 is released under the MIT License.
- Commercial use, modification, and derivative works (including distillation and fine-tuning) are permitted.
- **Base Models:**
  - DMind-1 is derived from Qwen3-32B, originally licensed under the [Qwen License](https://github.com/QwenLM/Qwen3).
  - Please ensure compliance with the original base model licenses when using or distributing derivatives.

## Contact
For questions or support, please contact [email protected]