Update README.md
Browse files
README.md
CHANGED
@@ -14,46 +14,44 @@ tags:
|
|
14 |
- conversational
|
15 |
- web3
|
16 |
- qwen3
|
17 |
-
|
18 |
eval_results:
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
---
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
<div align="center">
|
31 |
-
<img src="figures/dmind-ai-logo.png" width="60%" alt="DMind-1" />
|
32 |
-
</div>
|
33 |
-
|
34 |
<hr>
|
35 |
-
|
36 |
-
<
|
37 |
-
<
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
</a>
|
40 |
-
<a href="https://
|
41 |
-
<img alt="
|
42 |
-
</a>
|
43 |
-
<a href="https://x.com/dmindai">
|
44 |
-
<img alt="X" src="https://img.shields.io/badge/X-@dmindai-1DA1F2?logo=x"/>
|
45 |
-
</a>
|
46 |
-
<a href="https://www.apache.org/licenses/LICENSE-2.0">
|
47 |
-
<img alt="Apache 2.0" src="https://img.shields.io/badge/Apache%202.0-blue.svg"/>
|
48 |
</a>
|
49 |
-
<a href="https://
|
50 |
-
<img alt="
|
51 |
</a>
|
52 |
-
<a href="
|
53 |
-
<img alt="
|
|
|
|
|
|
|
54 |
</a>
|
55 |
</div>
|
56 |
|
|
|
57 |
## Table of Contents
|
58 |
- [Introduction](#introduction)
|
59 |
- [1. Model Overview](#1-model-overview)
|
@@ -62,6 +60,8 @@ eval_results:
|
|
62 |
- [4. Quickstart](#4-quickstart)
|
63 |
- [4.1 Model Downloads](#41-model-downloads)
|
64 |
- [4.2 OpenRouter API](#42-openrouter-api)
|
|
|
|
|
65 |
- [Contact](#contact)
|
66 |
|
67 |
## Introduction
|
@@ -69,8 +69,6 @@ The rapid growth of Web3 technologies—blockchain, DeFi, and smart contracts—
|
|
69 |
|
70 |
To address these limitations, we introduce **DMind-1**, a domain-specialized LLM fine-tuned for the Web3 ecosystem via supervised instruction tuning and reinforcement learning from human feedback (RLHF). Built on a powerful base model, DMind-1 achieves strong improvements in task accuracy, content safety, and expert-aligned interaction, significantly surpassing general-purpose models. DMind-1 represents a robust foundation for intelligent agents in the Web3 ecosystem.
|
71 |
|
72 |
-
To support real-time and resource-constrained applications, we further release **DMind-1-mini**, a compact variant distilled from both DMind-1 and a generalist LLM using a multi-level distillation framework. It retains key domain reasoning abilities while operating with significantly lower computational overhead.
|
73 |
-
|
74 |
## 1. Model Overview
|
75 |
|
76 |
### DMind-1
|
@@ -94,28 +92,10 @@ DMind-1 exhibits advanced web3-aligned reasoning and interactive capabilities in
|
|
94 |
|
95 |
- **Safe and Compliant Content Generation**: Outputs are aligned with domain-specific safety, ethics, and regulatory standards.
|
96 |
|
97 |
-
### DMind-1-mini
|
98 |
-
|
99 |
-
To address scenarios requiring lower latency and faster inference, we also introduce **DMind-1-mini**, a lightweight distilled version of DMind-1 based on Qwen3-14B.
|
100 |
-
DMind-1-mini is trained using knowledge distillation and our custom **DeepResearch** framework, drawing from two teacher models:
|
101 |
-
- **DMind-1** (Qwen3-32B): Our in-house Web3 expert model.
|
102 |
-
- **GPT-o3 + DeepResearch**: A general-purpose SOTA LLM with broad capabilities.
|
103 |
-
|
104 |
-
The **Distillation pipeline** combines:
|
105 |
-
|
106 |
-
- **Web3-specific data distillation**, using filtered instruction-following and QA samples generated by the teachers
|
107 |
-
|
108 |
-
- **Soft-label supervision**, encouraging the student to match the teachers’ output distributions and uncertainty
|
109 |
-
|
110 |
-
- **Intermediate representation alignment**, transferring structural knowledge from selected internal layers
|
111 |
-
|
112 |
-
|
113 |
-
This multi-level distillation strategy allows DMind-1-mini to maintain high Web3 task performance with significantly reduced computational overhead and latency, making it suitable for real-time applications such as instant Q&A and on-chain analytics, and lightweight agent deployment.
|
114 |
-
|
115 |
|
116 |
## 2. Evaluation Results
|
117 |
|
118 |
-
 |
|
140 |
|
141 |
### 4.2 OpenRouter API
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
## Contact
|
143 |
-
For questions or support, please contact [email protected]
|
|
|
14 |
- conversational
|
15 |
- web3
|
16 |
- qwen3
|
|
|
17 |
eval_results:
|
18 |
+
- task: domain-specific evaluation
|
19 |
+
dataset: DMindAI/DMind_Benchmark
|
20 |
+
metric: normalized web3 score
|
21 |
+
score: 77.44
|
22 |
+
model: DMind-1
|
23 |
+
model_rank: 1 / 24
|
24 |
---
|
25 |
|
26 |
+
<p align="center">
|
27 |
+
<img src="figures/dmind-ai-logo.png" width="300" alt="DMind Logo" />
|
28 |
+
</p>
|
|
|
|
|
|
|
|
|
29 |
<hr>
|
30 |
+
<div align="center" style="line-height: 1;">
|
31 |
+
<a href="https://dmind.ai/" target="_blank" style="margin: 2px;">
|
32 |
+
<img alt="DMind Website" src="https://img.shields.io/badge/DMind-Homepage-blue?logo=data:image/svg+xml;base64,)" style="display: inline-block; vertical-align: middle;"/>
|
33 |
+
</a>
|
34 |
+
<a href="https://huggingface.co/datasets/DMindAI/DMind-1" target="_blank" style="margin: 2px;">
|
35 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/HuggingFace-DMind--1-ffd21f?color=ffd21f&logo=huggingface" style="display: inline-block; vertical-align: middle;"/>
|
36 |
+
</a>
|
37 |
+
<a href="https://x.com/dmind_ai" target="_blank" style="margin: 2px;">
|
38 |
+
<img alt="X" src="https://img.shields.io/badge/X-@dmindai-1DA1F2?logo=x" style="display: inline-block; vertical-align: middle;"/>
|
39 |
</a>
|
40 |
+
<a href="https://openrouter.ai/chat" target="_blank" style="margin: 2px;">
|
41 |
+
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DMind-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
</a>
|
43 |
+
<a href="https://discord.gg/xxwmPHU3" target="_blank" style="margin: 2px;">
|
44 |
+
<img alt="Discord" src="https://img.shields.io/badge/Discord-DMind-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
45 |
</a>
|
46 |
+
<a href="https://opensource.org/licenses/MIT" target="_blank" style="margin: 2px;">
|
47 |
+
<img alt="Code License: MIT" src="https://img.shields.io/badge/Code%20License-MIT-yellow.svg" style="display: inline-block; vertical-align: middle;"/>
|
48 |
+
</a>
|
49 |
+
<a href="MODEL-LICENSE" target="_blank" style="margin: 2px;">
|
50 |
+
<img alt="Model License: Model Agreement" src="https://img.shields.io/badge/Model%20License-Model%20Agreement-yellow.svg" style="display: inline-block; vertical-align: middle;"/>
|
51 |
</a>
|
52 |
</div>
|
53 |
|
54 |
+
|
55 |
## Table of Contents
|
56 |
- [Introduction](#introduction)
|
57 |
- [1. Model Overview](#1-model-overview)
|
|
|
60 |
- [4. Quickstart](#4-quickstart)
|
61 |
- [4.1 Model Downloads](#41-model-downloads)
|
62 |
- [4.2 OpenRouter API](#42-openrouter-api)
|
63 |
+
- [4.3 OpenRouter Web Chat](#43-openrouter-web-chat)
|
64 |
+
- [License](#license)
|
65 |
- [Contact](#contact)
|
66 |
|
67 |
## Introduction
|
|
|
69 |
|
70 |
To address these limitations, we introduce **DMind-1**, a domain-specialized LLM fine-tuned for the Web3 ecosystem via supervised instruction tuning and reinforcement learning from human feedback (RLHF). Built on a powerful base model, DMind-1 achieves strong improvements in task accuracy, content safety, and expert-aligned interaction, significantly surpassing general-purpose models. DMind-1 represents a robust foundation for intelligent agents in the Web3 ecosystem.
|
71 |
|
|
|
|
|
72 |
## 1. Model Overview
|
73 |
|
74 |
### DMind-1
|
|
|
92 |
|
93 |
- **Safe and Compliant Content Generation**: Outputs are aligned with domain-specific safety, ethics, and regulatory standards.
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
## 2. Evaluation Results
|
97 |
|
98 |
+

|
99 |
|
100 |
We evaluate DMind-1 using the **DMind Benchmark**, a domain-specific evaluation suite tailored to assess large language models in the Web3 context. The benchmark spans 1,917 expert-reviewed questions across nine critical categories—including Blockchain Fundamentals, Infrastructure, Smart Contracts, DeFi, DAO, NFT, Token Economics, Meme, and Security. It combines multiple-choice and subjective open-ended tasks, simulating real-world challenges and requiring deep contextual understanding, which provides a comprehensive assessment of both factual knowledge and advanced reasoning.
|
101 |
|
|
|
113 |
|
114 |
### 4.1 Model Downloads
|
115 |
|
116 |
+
| **Model** | **Base Model** | **Download** |
|
117 |
+
|:--------------:|:--------------:|:----------------------------------------------------------------------------:|
|
118 |
+
| DMind-1 | Qwen3-32B | [Hugging Face Link](https://huggingface.co/dmind-ai/dmind-1) |
|
|
|
119 |
|
120 |
### 4.2 OpenRouter API
|
121 |
+
|
122 |
+
You can access **DMind-1** via the OpenRouter API. Simply specify the desired model in the `model` field of your request payload.
|
123 |
+
|
124 |
+
**API Endpoint:**
|
125 |
+
```
|
126 |
+
https://openrouter.ai/api/v1/chat/completions
|
127 |
+
```
|
128 |
+
|
129 |
+
**Authentication:**
|
130 |
+
- Obtain your API key from [OpenRouter](https://openrouter.ai/)
|
131 |
+
- Include it in the `Authorization` header as `Bearer YOUR_API_KEY`
|
132 |
+
|
133 |
+
**Model Identifiers:**
|
134 |
+
- `dmind-1` — Full-size expert model
|
135 |
+
|
136 |
+
**Example Request (Python):**
|
137 |
+
```python
|
138 |
+
import requests
|
139 |
+
|
140 |
+
headers = {
|
141 |
+
"Authorization": "Bearer YOUR_API_KEY",
|
142 |
+
"Content-Type": "application/json"
|
143 |
+
}
|
144 |
+
|
145 |
+
data = {
|
146 |
+
"model": "dmind-1",
|
147 |
+
"messages": [
|
148 |
+
{"role": "user", "content": "Explain DeFi in simple terms."}
|
149 |
+
]
|
150 |
+
}
|
151 |
+
|
152 |
+
response = requests.post(
|
153 |
+
"https://openrouter.ai/api/v1/chat/completions",
|
154 |
+
headers=headers,
|
155 |
+
json=data
|
156 |
+
)
|
157 |
+
print(response.json())
|
158 |
+
```
|
159 |
+
|
160 |
+
**Example Request (cURL):**
|
161 |
+
```bash
|
162 |
+
curl https://openrouter.ai/api/v1/chat/completions \
|
163 |
+
-H "Authorization: Bearer YOUR_API_KEY" \
|
164 |
+
-H "Content-Type: application/json" \
|
165 |
+
-d '{
|
166 |
+
"model": "dmind-1",
|
167 |
+
"messages": [{"role": "user", "content": "What is a smart contract?"}]
|
168 |
+
}'
|
169 |
+
```
|
170 |
+
|
171 |
+
**Notes:**
|
172 |
+
- Replace `YOUR_API_KEY` with your actual OpenRouter API key.
|
173 |
+
- Change the `model` field to `dmind-1` as needed.
|
174 |
+
- Both models support the same API structure for easy integration.
|
175 |
+
|
176 |
+
### 4.3 OpenRouter Web Chat
|
177 |
+
|
178 |
+
You can try **DMind-1** instantly using the [OpenRouter Web Chat](https://openrouter.ai/chat).
|
179 |
+
|
180 |
+
- Select your desired model from the dropdown menu (**DMind-1**).
|
181 |
+
- Enter your prompt and interact with the model in real time.
|
182 |
+
|
183 |
+
[](https://openrouter.ai/chat)
|
184 |
+
|
185 |
+
## License
|
186 |
+
- The code repository and model weights for DMind-1 is released under the MIT License.
|
187 |
+
- Commercial use, modification, and derivative works (including distillation and fine-tuning) are permitted.
|
188 |
+
- **Base Models:**
|
189 |
+
- DMind-1 is derived from Qwen3-32B, originally licensed under the [Qwen License](https://github.com/QwenLM/Qwen3).
|
190 |
+
- Please ensure compliance with the original base model licenses when using or distributing derivatives.
|
191 |
+
|
192 |
## Contact
|
193 |
+
For questions or support, please contact [email protected]
|