Update modeling_quiet.py
Browse files- modeling_quiet.py +53 -52
modeling_quiet.py
CHANGED
|
@@ -1169,6 +1169,59 @@ def nonzero_mean(x, axis=None):
|
|
| 1169 |
def loss_mean(x):
|
| 1170 |
return x.sum() / (x != 0).sum()
|
| 1171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1172 |
class QuietForCausalLM(QuietPreTrainedModel, QuietGenerationMixin):
|
| 1173 |
_tied_weights_keys = ["lm_head.weight"]
|
| 1174 |
|
|
@@ -2228,58 +2281,6 @@ class QuietForCausalLM(QuietPreTrainedModel, QuietGenerationMixin):
|
|
| 2228 |
QUIET_START_DOCSTRING,
|
| 2229 |
)
|
| 2230 |
|
| 2231 |
-
class QuietGenerationMixin(GenerationMixin):
|
| 2232 |
-
def generate(self, input_ids, attention_mask=None, **generate_kwargs):
|
| 2233 |
-
if attention_mask is None:
|
| 2234 |
-
attention_mask = torch.ones_like(input_ids)
|
| 2235 |
-
|
| 2236 |
-
max_length = generate_kwargs.get("max_length", 20)
|
| 2237 |
-
temp = generate_kwargs.get("temperature", 1.0)
|
| 2238 |
-
|
| 2239 |
-
finished_generating = torch.zeros(len(input_ids), dtype=torch.bool, device=input_ids.device)
|
| 2240 |
-
|
| 2241 |
-
for cur_token_idx in range(max_length):
|
| 2242 |
-
# Sample the next token
|
| 2243 |
-
new_ids = self(
|
| 2244 |
-
input_ids[~finished_generating],
|
| 2245 |
-
attention_mask=attention_mask[~finished_generating]
|
| 2246 |
-
)['logits']
|
| 2247 |
-
|
| 2248 |
-
# Mask out the start and end thought tokens so we don't accidentally sample them
|
| 2249 |
-
new_ids[:, :, self.tokenizer.vocab_size:] = -float("inf")
|
| 2250 |
-
|
| 2251 |
-
for list_idx, answer_idx in enumerate((~finished_generating).nonzero(as_tuple=True)[0]):
|
| 2252 |
-
# Find the index of the last token that is not padding
|
| 2253 |
-
base_answer_ids = input_ids[answer_idx]
|
| 2254 |
-
new_answer_ids = new_ids[list_idx]
|
| 2255 |
-
last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
|
| 2256 |
-
|
| 2257 |
-
new_ids_sampled = torch.multinomial(
|
| 2258 |
-
torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temp, dim=-1), 1)
|
| 2259 |
-
|
| 2260 |
-
# Assign the new id to the last token
|
| 2261 |
-
if last_token_idx + 1 >= len(base_answer_ids):
|
| 2262 |
-
# Add padding everywhere
|
| 2263 |
-
new_padding = torch.full((len(input_ids), 1), self.tokenizer.pad_token_id, dtype=torch.long,
|
| 2264 |
-
device=input_ids.device)
|
| 2265 |
-
input_ids = torch.cat([input_ids, new_padding], dim=-1)
|
| 2266 |
-
attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
|
| 2267 |
-
|
| 2268 |
-
attention_mask[answer_idx, last_token_idx + 1] = 1
|
| 2269 |
-
input_ids[answer_idx, last_token_idx + 1] = new_ids_sampled
|
| 2270 |
-
|
| 2271 |
-
if new_ids_sampled == self.tokenizer.eos_token_id or new_ids_sampled == self.tokenizer.bos_token_id or new_ids_sampled == self.tokenizer.pad_token_id:
|
| 2272 |
-
finished_generating[answer_idx] = 1
|
| 2273 |
-
|
| 2274 |
-
if finished_generating.all():
|
| 2275 |
-
break
|
| 2276 |
-
|
| 2277 |
-
streamer = generate_kwargs.get("streamer")
|
| 2278 |
-
if streamer is not None:
|
| 2279 |
-
streamer.put(input_ids)
|
| 2280 |
-
streamer.end()
|
| 2281 |
-
|
| 2282 |
-
return input_ids
|
| 2283 |
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Quiet, LLAMA->QUIET
|
| 2284 |
class QuietForSequenceClassification(QuietPreTrainedModel):
|
| 2285 |
def __init__(self, config):
|
|
|
|
| 1169 |
def loss_mean(x):
|
| 1170 |
return x.sum() / (x != 0).sum()
|
| 1171 |
|
| 1172 |
+
class QuietGenerationMixin(GenerationMixin):
|
| 1173 |
+
def generate(self, input_ids, attention_mask=None, **generate_kwargs):
|
| 1174 |
+
if attention_mask is None:
|
| 1175 |
+
attention_mask = torch.ones_like(input_ids)
|
| 1176 |
+
|
| 1177 |
+
max_length = generate_kwargs.get("max_length", 20)
|
| 1178 |
+
temp = generate_kwargs.get("temperature", 1.0)
|
| 1179 |
+
|
| 1180 |
+
finished_generating = torch.zeros(len(input_ids), dtype=torch.bool, device=input_ids.device)
|
| 1181 |
+
|
| 1182 |
+
for cur_token_idx in range(max_length):
|
| 1183 |
+
# Sample the next token
|
| 1184 |
+
new_ids = self(
|
| 1185 |
+
input_ids[~finished_generating],
|
| 1186 |
+
attention_mask=attention_mask[~finished_generating]
|
| 1187 |
+
)['logits']
|
| 1188 |
+
|
| 1189 |
+
# Mask out the start and end thought tokens so we don't accidentally sample them
|
| 1190 |
+
new_ids[:, :, self.tokenizer.vocab_size:] = -float("inf")
|
| 1191 |
+
|
| 1192 |
+
for list_idx, answer_idx in enumerate((~finished_generating).nonzero(as_tuple=True)[0]):
|
| 1193 |
+
# Find the index of the last token that is not padding
|
| 1194 |
+
base_answer_ids = input_ids[answer_idx]
|
| 1195 |
+
new_answer_ids = new_ids[list_idx]
|
| 1196 |
+
last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
|
| 1197 |
+
|
| 1198 |
+
new_ids_sampled = torch.multinomial(
|
| 1199 |
+
torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temp, dim=-1), 1)
|
| 1200 |
+
|
| 1201 |
+
# Assign the new id to the last token
|
| 1202 |
+
if last_token_idx + 1 >= len(base_answer_ids):
|
| 1203 |
+
# Add padding everywhere
|
| 1204 |
+
new_padding = torch.full((len(input_ids), 1), self.tokenizer.pad_token_id, dtype=torch.long,
|
| 1205 |
+
device=input_ids.device)
|
| 1206 |
+
input_ids = torch.cat([input_ids, new_padding], dim=-1)
|
| 1207 |
+
attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
|
| 1208 |
+
|
| 1209 |
+
attention_mask[answer_idx, last_token_idx + 1] = 1
|
| 1210 |
+
input_ids[answer_idx, last_token_idx + 1] = new_ids_sampled
|
| 1211 |
+
|
| 1212 |
+
if new_ids_sampled == self.tokenizer.eos_token_id or new_ids_sampled == self.tokenizer.bos_token_id or new_ids_sampled == self.tokenizer.pad_token_id:
|
| 1213 |
+
finished_generating[answer_idx] = 1
|
| 1214 |
+
|
| 1215 |
+
if finished_generating.all():
|
| 1216 |
+
break
|
| 1217 |
+
|
| 1218 |
+
streamer = generate_kwargs.get("streamer")
|
| 1219 |
+
if streamer is not None:
|
| 1220 |
+
streamer.put(input_ids)
|
| 1221 |
+
streamer.end()
|
| 1222 |
+
|
| 1223 |
+
return input_ids
|
| 1224 |
+
|
| 1225 |
class QuietForCausalLM(QuietPreTrainedModel, QuietGenerationMixin):
|
| 1226 |
_tied_weights_keys = ["lm_head.weight"]
|
| 1227 |
|
|
|
|
| 2281 |
QUIET_START_DOCSTRING,
|
| 2282 |
)
|
| 2283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2284 |
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Quiet, LLAMA->QUIET
|
| 2285 |
class QuietForSequenceClassification(QuietPreTrainedModel):
|
| 2286 |
def __init__(self, config):
|