Update modeling_quiet.py
Browse files- modeling_quiet.py +162 -99
modeling_quiet.py
CHANGED
@@ -1169,7 +1169,7 @@ def nonzero_mean(x, axis=None):
|
|
1169 |
def loss_mean(x):
|
1170 |
return x.sum() / (x != 0).sum()
|
1171 |
|
1172 |
-
class QuietForCausalLM(QuietPreTrainedModel,
|
1173 |
_tied_weights_keys = ["lm_head.weight"]
|
1174 |
|
1175 |
def __init__(self, config):
|
@@ -1324,91 +1324,91 @@ class QuietForCausalLM(QuietPreTrainedModel, GenerationMixin):
|
|
1324 |
elif isinstance(module, nn.Embedding):
|
1325 |
nn.init.xavier_uniform_(module.weight)
|
1326 |
|
1327 |
-
@torch.no_grad()
|
1328 |
-
def generate(
|
1329 |
-
|
1330 |
-
|
1331 |
-
|
1332 |
-
|
1333 |
-
) -> torch.LongTensor:
|
1334 |
-
|
1335 |
-
|
1336 |
-
|
1337 |
-
|
1338 |
-
|
1339 |
-
|
1340 |
-
|
1341 |
-
|
1342 |
-
|
1343 |
-
|
1344 |
-
|
1345 |
-
|
1346 |
-
|
1347 |
-
|
1348 |
-
|
1349 |
-
|
1350 |
-
|
1351 |
-
|
1352 |
-
|
1353 |
|
1354 |
-
|
1355 |
-
|
1356 |
-
|
1357 |
-
|
1358 |
-
|
1359 |
-
|
1360 |
-
|
1361 |
-
|
1362 |
-
|
1363 |
-
|
1364 |
-
|
1365 |
-
|
1366 |
-
|
1367 |
-
|
1368 |
-
|
1369 |
-
|
1370 |
-
|
1371 |
-
|
1372 |
-
|
1373 |
-
|
1374 |
-
|
1375 |
-
|
1376 |
-
|
1377 |
|
1378 |
-
|
1379 |
-
|
1380 |
|
1381 |
-
|
1382 |
-
|
1383 |
-
|
1384 |
-
|
1385 |
-
|
1386 |
-
|
1387 |
-
|
1388 |
-
|
1389 |
-
|
1390 |
-
|
1391 |
-
|
1392 |
-
|
1393 |
-
|
1394 |
-
|
1395 |
-
|
1396 |
-
|
1397 |
|
1398 |
-
|
1399 |
-
|
1400 |
|
1401 |
-
|
1402 |
-
|
1403 |
|
1404 |
-
|
1405 |
-
|
1406 |
|
1407 |
-
|
1408 |
-
|
1409 |
-
|
1410 |
|
1411 |
-
|
1412 |
|
1413 |
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
1414 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
@@ -1421,31 +1421,41 @@ class QuietForCausalLM(QuietPreTrainedModel, GenerationMixin):
|
|
1421 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1422 |
labels: Optional[torch.LongTensor] = None,
|
1423 |
use_cache: Optional[bool] = None,
|
1424 |
-
# output_router_logits: Optional[bool] = None,
|
1425 |
output_attentions: Optional[bool] = None,
|
1426 |
output_hidden_states: Optional[bool] = None,
|
1427 |
return_dict: Optional[bool] = None,
|
1428 |
-
|
1429 |
-
|
1430 |
-
|
1431 |
-
|
1432 |
-
|
1433 |
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1434 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1435 |
-
Returns:
|
1436 |
-
Example:
|
1437 |
-
```python
|
1438 |
-
>>> from transformers import AutoTokenizer, QuietForCausalLM
|
1439 |
-
>>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1")
|
1440 |
-
>>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1")
|
1441 |
-
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1442 |
-
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1443 |
-
>>> # Generate
|
1444 |
-
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1445 |
-
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1446 |
-
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1447 |
-
```"""
|
1448 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1449 |
if not self.training:
|
1450 |
n_ahead_talk_to_restore = self.n_ahead_talk
|
1451 |
n_passes_to_restore = self.n_passes
|
@@ -2217,6 +2227,59 @@ class QuietForCausalLM(QuietPreTrainedModel, GenerationMixin):
|
|
2217 |
""",
|
2218 |
QUIET_START_DOCSTRING,
|
2219 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2220 |
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Quiet, LLAMA->QUIET
|
2221 |
class QuietForSequenceClassification(QuietPreTrainedModel):
|
2222 |
def __init__(self, config):
|
|
|
1169 |
def loss_mean(x):
|
1170 |
return x.sum() / (x != 0).sum()
|
1171 |
|
1172 |
+
class QuietForCausalLM(QuietPreTrainedModel, QuietGenerationMixin):
|
1173 |
_tied_weights_keys = ["lm_head.weight"]
|
1174 |
|
1175 |
def __init__(self, config):
|
|
|
1324 |
elif isinstance(module, nn.Embedding):
|
1325 |
nn.init.xavier_uniform_(module.weight)
|
1326 |
|
1327 |
+
# @torch.no_grad()
|
1328 |
+
# def generate(
|
1329 |
+
# self,
|
1330 |
+
# input_ids: torch.LongTensor,
|
1331 |
+
# attention_mask: Optional[torch.LongTensor] = None,
|
1332 |
+
# **generate_kwargs,
|
1333 |
+
# ) -> torch.LongTensor:
|
1334 |
+
# n_ahead = 8
|
1335 |
+
# n_ahead_talk = 4
|
1336 |
+
# merged_talk_heads = True
|
1337 |
+
|
1338 |
+
# if attention_mask is None:
|
1339 |
+
# attention_mask = torch.ones_like(input_ids)
|
1340 |
+
|
1341 |
+
# generate_kwargs.update({
|
1342 |
+
# "max_thoughts": n_ahead + n_ahead_talk + 1,
|
1343 |
+
# "merged_talk_heads": merged_talk_heads,
|
1344 |
+
# "merged_lm_and_talk_heads": False,
|
1345 |
+
# "merged_lm_and_think_heads": True,
|
1346 |
+
# "use_concat_talk_head": True,
|
1347 |
+
# "use_shallow_think": True,
|
1348 |
+
# "use_shallow_talk": False,
|
1349 |
+
# "use_complex_think_head": False,
|
1350 |
+
# "use_complex_talk_head": True,
|
1351 |
+
# "use_weighted_talk_head": True,
|
1352 |
+
# })
|
1353 |
|
1354 |
+
# # Validate stopping criteria
|
1355 |
+
# stopping_criteria = generate_kwargs.pop("stopping_criteria", None)
|
1356 |
+
# if stopping_criteria is not None:
|
1357 |
+
# stopping_criteria = validate_stopping_criteria(
|
1358 |
+
# stopping_criteria,
|
1359 |
+
# self.config,
|
1360 |
+
# )
|
1361 |
+
# stopping_criteria = StoppingCriteriaList(stopping_criteria)
|
1362 |
+
# else:
|
1363 |
+
# stopping_criteria = StoppingCriteriaList()
|
1364 |
+
|
1365 |
+
# streamer = generate_kwargs.pop("streamer", None)
|
1366 |
+
# temp = generate_kwargs.pop("temperature", 1.0)
|
1367 |
+
# max_length = generate_kwargs.pop("max_length", 20)
|
1368 |
+
|
1369 |
+
# finished_generating = torch.zeros(len(input_ids), dtype=torch.bool, device=input_ids.device)
|
1370 |
+
|
1371 |
+
# for cur_token_idx in range(max_length):
|
1372 |
+
# # Sample the next token
|
1373 |
+
# new_ids = self(
|
1374 |
+
# input_ids[~finished_generating],
|
1375 |
+
# attention_mask=attention_mask[~finished_generating]
|
1376 |
+
# )['logits']
|
1377 |
|
1378 |
+
# # Mask out the start and end thought tokens so we don't accidentally sample them
|
1379 |
+
# new_ids[:, :, self.tokenizer.vocab_size:] = -float("inf")
|
1380 |
|
1381 |
+
# for list_idx, answer_idx in enumerate((~finished_generating).nonzero(as_tuple=True)[0]):
|
1382 |
+
# # Find the index of the last token that is not padding
|
1383 |
+
# base_answer_ids = input_ids[answer_idx]
|
1384 |
+
# new_answer_ids = new_ids[list_idx]
|
1385 |
+
# last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
|
1386 |
+
|
1387 |
+
# new_ids_sampled = torch.multinomial(
|
1388 |
+
# torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temp, dim=-1), 1)
|
1389 |
+
|
1390 |
+
# # Assign the new id to the last token
|
1391 |
+
# if last_token_idx + 1 >= len(base_answer_ids):
|
1392 |
+
# # Add padding everywhere
|
1393 |
+
# new_padding = torch.full((len(input_ids), 1), self.tokenizer.pad_token_id, dtype=torch.long,
|
1394 |
+
# device=input_ids.device)
|
1395 |
+
# input_ids = torch.cat([input_ids, new_padding], dim=-1)
|
1396 |
+
# attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
|
1397 |
|
1398 |
+
# attention_mask[answer_idx, last_token_idx + 1] = 1
|
1399 |
+
# input_ids[answer_idx, last_token_idx + 1] = new_ids_sampled
|
1400 |
|
1401 |
+
# if new_ids_sampled == self.tokenizer.eos_token_id or new_ids_sampled == self.tokenizer.bos_token_id or new_ids_sampled == self.tokenizer.pad_token_id:
|
1402 |
+
# finished_generating[answer_idx] = 1
|
1403 |
|
1404 |
+
# if finished_generating.all():
|
1405 |
+
# break
|
1406 |
|
1407 |
+
# if streamer is not None:
|
1408 |
+
# streamer.put(input_ids)
|
1409 |
+
# streamer.end()
|
1410 |
|
1411 |
+
# return input_ids
|
1412 |
|
1413 |
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
1414 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
|
1421 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1422 |
labels: Optional[torch.LongTensor] = None,
|
1423 |
use_cache: Optional[bool] = None,
|
|
|
1424 |
output_attentions: Optional[bool] = None,
|
1425 |
output_hidden_states: Optional[bool] = None,
|
1426 |
return_dict: Optional[bool] = None,
|
1427 |
+
**kwargs,
|
1428 |
+
):
|
1429 |
+
n_ahead = 8
|
1430 |
+
n_ahead_talk = 4
|
1431 |
+
merged_talk_heads = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1432 |
|
1433 |
+
kwargs.update({
|
1434 |
+
"max_thoughts": n_ahead + n_ahead_talk + 1,
|
1435 |
+
"merged_talk_heads": merged_talk_heads,
|
1436 |
+
"merged_lm_and_talk_heads": False,
|
1437 |
+
"merged_lm_and_think_heads": True,
|
1438 |
+
"use_concat_talk_head": True,
|
1439 |
+
"use_shallow_think": True,
|
1440 |
+
"use_shallow_talk": False,
|
1441 |
+
"use_complex_think_head": False,
|
1442 |
+
"use_complex_talk_head": True,
|
1443 |
+
"use_weighted_talk_head": True,
|
1444 |
+
})
|
1445 |
+
|
1446 |
+
return super().forward(
|
1447 |
+
input_ids=input_ids,
|
1448 |
+
attention_mask=attention_mask,
|
1449 |
+
position_ids=position_ids,
|
1450 |
+
past_key_values=past_key_values,
|
1451 |
+
inputs_embeds=inputs_embeds,
|
1452 |
+
labels=labels,
|
1453 |
+
use_cache=use_cache,
|
1454 |
+
output_attentions=output_attentions,
|
1455 |
+
output_hidden_states=output_hidden_states,
|
1456 |
+
return_dict=return_dict,
|
1457 |
+
**kwargs,
|
1458 |
+
)
|
1459 |
if not self.training:
|
1460 |
n_ahead_talk_to_restore = self.n_ahead_talk
|
1461 |
n_passes_to_restore = self.n_passes
|
|
|
2227 |
""",
|
2228 |
QUIET_START_DOCSTRING,
|
2229 |
)
|
2230 |
+
|
2231 |
+
class QuietGenerationMixin(GenerationMixin):
|
2232 |
+
def generate(self, input_ids, attention_mask=None, **generate_kwargs):
|
2233 |
+
if attention_mask is None:
|
2234 |
+
attention_mask = torch.ones_like(input_ids)
|
2235 |
+
|
2236 |
+
max_length = generate_kwargs.get("max_length", 20)
|
2237 |
+
temp = generate_kwargs.get("temperature", 1.0)
|
2238 |
+
|
2239 |
+
finished_generating = torch.zeros(len(input_ids), dtype=torch.bool, device=input_ids.device)
|
2240 |
+
|
2241 |
+
for cur_token_idx in range(max_length):
|
2242 |
+
# Sample the next token
|
2243 |
+
new_ids = self(
|
2244 |
+
input_ids[~finished_generating],
|
2245 |
+
attention_mask=attention_mask[~finished_generating]
|
2246 |
+
)['logits']
|
2247 |
+
|
2248 |
+
# Mask out the start and end thought tokens so we don't accidentally sample them
|
2249 |
+
new_ids[:, :, self.tokenizer.vocab_size:] = -float("inf")
|
2250 |
+
|
2251 |
+
for list_idx, answer_idx in enumerate((~finished_generating).nonzero(as_tuple=True)[0]):
|
2252 |
+
# Find the index of the last token that is not padding
|
2253 |
+
base_answer_ids = input_ids[answer_idx]
|
2254 |
+
new_answer_ids = new_ids[list_idx]
|
2255 |
+
last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max()
|
2256 |
+
|
2257 |
+
new_ids_sampled = torch.multinomial(
|
2258 |
+
torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temp, dim=-1), 1)
|
2259 |
+
|
2260 |
+
# Assign the new id to the last token
|
2261 |
+
if last_token_idx + 1 >= len(base_answer_ids):
|
2262 |
+
# Add padding everywhere
|
2263 |
+
new_padding = torch.full((len(input_ids), 1), self.tokenizer.pad_token_id, dtype=torch.long,
|
2264 |
+
device=input_ids.device)
|
2265 |
+
input_ids = torch.cat([input_ids, new_padding], dim=-1)
|
2266 |
+
attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1)
|
2267 |
+
|
2268 |
+
attention_mask[answer_idx, last_token_idx + 1] = 1
|
2269 |
+
input_ids[answer_idx, last_token_idx + 1] = new_ids_sampled
|
2270 |
+
|
2271 |
+
if new_ids_sampled == self.tokenizer.eos_token_id or new_ids_sampled == self.tokenizer.bos_token_id or new_ids_sampled == self.tokenizer.pad_token_id:
|
2272 |
+
finished_generating[answer_idx] = 1
|
2273 |
+
|
2274 |
+
if finished_generating.all():
|
2275 |
+
break
|
2276 |
+
|
2277 |
+
streamer = generate_kwargs.get("streamer")
|
2278 |
+
if streamer is not None:
|
2279 |
+
streamer.put(input_ids)
|
2280 |
+
streamer.end()
|
2281 |
+
|
2282 |
+
return input_ids
|
2283 |
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Quiet, LLAMA->QUIET
|
2284 |
class QuietForSequenceClassification(QuietPreTrainedModel):
|
2285 |
def __init__(self, config):
|