File size: 3,023 Bytes
c0dd54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
from transformers.utils import logging

logger = logging.get_logger(__name__)

@torch.no_grad()
def generate(
    self,
    input_ids,
    attention_mask=None,
    max_length=None,
    temperature=1.0,
    n_ahead=4,
    n_ahead_talk=4,
    merged_talk_heads=True,
    merged_lm_and_talk_heads=False,
    merged_lm_and_think_heads=True,
    use_concat_talk_head=True,
    use_shallow_think=True,
    use_shallow_talk=False,
    use_complex_think_head=False,
    use_complex_talk_head=True,
    use_weighted_talk_head=True,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,
    **kwargs
):
    batch_size, seq_length = input_ids.shape

    # Set model attributes
    self.max_thoughts = n_ahead + n_ahead_talk + 1
    self.merged_talk_heads = merged_talk_heads
    self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
    self.merged_lm_and_think_heads = merged_lm_and_think_heads
    self.use_concat_talk_head = use_concat_talk_head
    self.use_shallow_think = use_shallow_think
    self.use_shallow_talk = use_shallow_talk
    self.use_complex_think_head = use_complex_think_head
    self.use_complex_talk_head = use_complex_talk_head
    self.use_weighted_talk_head = use_weighted_talk_head

    # Set model properties
    self.use_end_thought_token = True
    self.use_start_thought_token = True
    self.wandb_enabled = True
    self.n_ahead = n_ahead
    self.n_passes = 1
    self.eval_mode = True
    self.first_run = False
    self.kill_after = 100
    self.rm_initialized = True
    self.original_mode = False

    # Keep track of which sequences have finished generating
    finished_generating = torch.zeros(batch_size, dtype=torch.bool, device=input_ids.device)

    while input_ids.shape[-1] < max_length:
        # Get the model outputs
        model_outputs = self(
            input_ids[~finished_generating],
            attention_mask=attention_mask[~finished_generating] if attention_mask is not None else None,
            **kwargs
        )
        logits = model_outputs.logits[:, -1, :]

        # Apply temperature scaling
        logits = logits / temperature

        # Sample the next token
        next_token_logits = logits
        next_token_id = torch.multinomial(torch.softmax(next_token_logits, dim=-1), num_samples=1).squeeze(-1)

        # Assign the sampled token to the sequences that are still generating
        input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1)], dim=-1)

        # Update the attention mask if provided
        if attention_mask is not None:
            attention_mask = torch.cat([attention_mask, torch.ones_like(next_token_id.unsqueeze(-1))], dim=-1)

        # Mark sequences as finished if the end token is generated
        finished_generating = finished_generating | (next_token_id == self.tokenizer.eos_token_id)

        # Stop generation if all sequences are finished
        if finished_generating.all():
            break

    # Return the generated token IDs and attention mask
    return input_ids, attention_mask