Create generate.py
Browse files- generate.py +88 -0
generate.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
logger = logging.get_logger(__name__)
|
5 |
+
|
6 |
+
@torch.no_grad()
|
7 |
+
def generate(
|
8 |
+
self,
|
9 |
+
input_ids,
|
10 |
+
attention_mask=None,
|
11 |
+
max_length=None,
|
12 |
+
temperature=1.0,
|
13 |
+
n_ahead=4,
|
14 |
+
n_ahead_talk=4,
|
15 |
+
merged_talk_heads=True,
|
16 |
+
merged_lm_and_talk_heads=False,
|
17 |
+
merged_lm_and_think_heads=True,
|
18 |
+
use_concat_talk_head=True,
|
19 |
+
use_shallow_think=True,
|
20 |
+
use_shallow_talk=False,
|
21 |
+
use_complex_think_head=False,
|
22 |
+
use_complex_talk_head=True,
|
23 |
+
use_weighted_talk_head=True,
|
24 |
+
trust_remote_code=True,
|
25 |
+
torch_dtype=torch.bfloat16,
|
26 |
+
**kwargs
|
27 |
+
):
|
28 |
+
batch_size, seq_length = input_ids.shape
|
29 |
+
|
30 |
+
# Set model attributes
|
31 |
+
self.max_thoughts = n_ahead + n_ahead_talk + 1
|
32 |
+
self.merged_talk_heads = merged_talk_heads
|
33 |
+
self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
|
34 |
+
self.merged_lm_and_think_heads = merged_lm_and_think_heads
|
35 |
+
self.use_concat_talk_head = use_concat_talk_head
|
36 |
+
self.use_shallow_think = use_shallow_think
|
37 |
+
self.use_shallow_talk = use_shallow_talk
|
38 |
+
self.use_complex_think_head = use_complex_think_head
|
39 |
+
self.use_complex_talk_head = use_complex_talk_head
|
40 |
+
self.use_weighted_talk_head = use_weighted_talk_head
|
41 |
+
|
42 |
+
# Set model properties
|
43 |
+
self.use_end_thought_token = True
|
44 |
+
self.use_start_thought_token = True
|
45 |
+
self.wandb_enabled = True
|
46 |
+
self.n_ahead = n_ahead
|
47 |
+
self.n_passes = 1
|
48 |
+
self.eval_mode = True
|
49 |
+
self.first_run = False
|
50 |
+
self.kill_after = 100
|
51 |
+
self.rm_initialized = True
|
52 |
+
self.original_mode = False
|
53 |
+
|
54 |
+
# Keep track of which sequences have finished generating
|
55 |
+
finished_generating = torch.zeros(batch_size, dtype=torch.bool, device=input_ids.device)
|
56 |
+
|
57 |
+
while input_ids.shape[-1] < max_length:
|
58 |
+
# Get the model outputs
|
59 |
+
model_outputs = self(
|
60 |
+
input_ids[~finished_generating],
|
61 |
+
attention_mask=attention_mask[~finished_generating] if attention_mask is not None else None,
|
62 |
+
**kwargs
|
63 |
+
)
|
64 |
+
logits = model_outputs.logits[:, -1, :]
|
65 |
+
|
66 |
+
# Apply temperature scaling
|
67 |
+
logits = logits / temperature
|
68 |
+
|
69 |
+
# Sample the next token
|
70 |
+
next_token_logits = logits
|
71 |
+
next_token_id = torch.multinomial(torch.softmax(next_token_logits, dim=-1), num_samples=1).squeeze(-1)
|
72 |
+
|
73 |
+
# Assign the sampled token to the sequences that are still generating
|
74 |
+
input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1)], dim=-1)
|
75 |
+
|
76 |
+
# Update the attention mask if provided
|
77 |
+
if attention_mask is not None:
|
78 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(next_token_id.unsqueeze(-1))], dim=-1)
|
79 |
+
|
80 |
+
# Mark sequences as finished if the end token is generated
|
81 |
+
finished_generating = finished_generating | (next_token_id == self.tokenizer.eos_token_id)
|
82 |
+
|
83 |
+
# Stop generation if all sequences are finished
|
84 |
+
if finished_generating.all():
|
85 |
+
break
|
86 |
+
|
87 |
+
# Return the generated token IDs and attention mask
|
88 |
+
return input_ids, attention_mask
|