Meta Llama 3 8B Reasoning (Testing purpose only)
Code example:
# test the model
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
def main():
model_id = "CreitinGameplays/Llama-3.1-8b-reasoning-test"
# Load the tokenizer.
tokenizer = AutoTokenizer.from_pretrained(model_id, add_eos_token=True)
# Load the model using bitsandbytes 8-bit quantization if CUDA is available.
if torch.cuda.is_available():
model = AutoModelForCausalLM.from_pretrained(
model_id,
load_in_8bit=True,
device_map="auto"
)
device = torch.device("cuda")
else:
model = AutoModelForCausalLM.from_pretrained(model_id)
device = torch.device("cpu")
# Define the generation parameters.
generation_kwargs = {
"max_new_tokens": 2048,
"do_sample": True,
"temperature": 0.4,
"top_k": 50,
"top_p": 0.95,
"repetition_penalty": 1.0,
"num_return_sequences": 1,
"forced_eos_token_id": tokenizer.eos_token_id,
"pad_token_id": tokenizer.eos_token_id
}
print("Enter your prompt (type 'exit' to quit):")
while True:
# Get user input.
user_input = input("Input> ")
if user_input.lower().strip() in ("exit", "quit"):
break
# Construct the prompt in your desired format.
prompt = f"""
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful assistant named Llama, made by Meta AI. Always use your <|end_reasoning|> token when ending a reason step, without text formatting.<|eot_id|><|start_header_id|>user<|end_header_id|>
{user_input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> <|reasoning|>
"""
# Tokenize the prompt and send to the selected device.
input_ids = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=True).to(device)
# Create a new TextStreamer instance for streaming responses.
streamer = TextStreamer(tokenizer)
generation_kwargs["streamer"] = streamer
print("\nAssistant Response:")
# Generate the text (tokens will stream to stdout via the streamer).
outputs = model.generate(input_ids, **generation_kwargs)
if __name__ == "__main__":
main()
Example model response:
<|begin_of_text|>
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful assistant named Llama, made by Meta AI. Always use your <|end_reasoning|> when ending a reason step.<|eot_id|><|start_header_id|>user<|end_header_id|>
how many r's are in strawberry?<|eot_id|><|start_header_id|>assistant<|end_header_id|><|reasoning|>
To determine the number of R's in the word "strawberry", we need to break down the word into its individual letters.
The word "strawberry" can be spelled out as S-T-R-A-W-B-E-R-R-Y. Now, let's examine each letter to count the number of R's.
1. S: There is no R in the letter S.
2. T: There is no R in the letter T.
3. R: Ah, we have our first R!
4. A: There is no R in the letter A.
5. W: There is no R in the letter W.
6. B: There is no R in the letter B.
7. E: There is no R in the letter E.
8. R: Another R! We now have two R's.
9. R: And another R! We now have three R's.
10. Y: There is no R in the letter Y.
So, after counting all the letters, we can see that the word "strawberry" contains three R's.
Therefore, the answer is 3.
<|end_reasoning|>
3. The word "strawberry" contains 3 R's.<|eot_id|>
- Downloads last month
- 47
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for CreitinGameplays/Llama-3.1-8b-reasoning-test
Base model
meta-llama/Meta-Llama-3-8B-Instruct