|
--- |
|
license: mit |
|
base_model: |
|
- lmms-lab/LLaVA-Video-7B-Qwen2 |
|
--- |
|
|
|
# LLaVA-Video-7B-Qwen2-UnifiedReward-DPO |
|
|
|
## Model Summary |
|
|
|
This model is trained on LLaVA-Video-7B-Qwen2 based on DPO preference data constructed by our [UnifiedReward-7B](https://huggingface.co/CodeGoat24/UnifiedReward-7b) for enhanced video understanding ability. |
|
|
|
For further details, please refer to the following resources: |
|
- π° Paper: https://arxiv.org/pdf/2503.05236 |
|
- πͺ Project Page: https://codegoat24.github.io/UnifiedReward/ |
|
- π€ Model Collections: https://huggingface.co/collections/CodeGoat24/unifiedreward-models-67c3008148c3a380d15ac63a |
|
- π€ Dataset Collections: https://huggingface.co/collections/CodeGoat24/unifiedreward-training-data-67c300d4fd5eff00fa7f1ede |
|
- π Point of Contact: [Yibin Wang](https://codegoat24.github.io) |
|
|
|
|
|
### Quick Start |
|
|
|
~~~python |
|
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git |
|
from llava.model.builder import load_pretrained_model |
|
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token |
|
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX |
|
from llava.conversation import conv_templates, SeparatorStyle |
|
from PIL import Image |
|
import requests |
|
import copy |
|
import torch |
|
import sys |
|
import warnings |
|
from decord import VideoReader, cpu |
|
import numpy as np |
|
warnings.filterwarnings("ignore") |
|
def load_video(video_path, max_frames_num,fps=1,force_sample=False): |
|
if max_frames_num == 0: |
|
return np.zeros((1, 336, 336, 3)) |
|
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1) |
|
total_frame_num = len(vr) |
|
video_time = total_frame_num / vr.get_avg_fps() |
|
fps = round(vr.get_avg_fps()/fps) |
|
frame_idx = [i for i in range(0, len(vr), fps)] |
|
frame_time = [i/fps for i in frame_idx] |
|
if len(frame_idx) > max_frames_num or force_sample: |
|
sample_fps = max_frames_num |
|
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int) |
|
frame_idx = uniform_sampled_frames.tolist() |
|
frame_time = [i/vr.get_avg_fps() for i in frame_idx] |
|
frame_time = ",".join([f"{i:.2f}s" for i in frame_time]) |
|
spare_frames = vr.get_batch(frame_idx).asnumpy() |
|
# import pdb;pdb.set_trace() |
|
return spare_frames,frame_time,video_time |
|
pretrained = "CodeGoat24/LLaVA-Video-7B-Qwen2-UnifiedReward-DPO" |
|
model_name = "llava_qwen" |
|
device = "cuda" |
|
device_map = "auto" |
|
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args |
|
model.eval() |
|
video_path = "XXXX" |
|
max_frames_num = 64 |
|
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True) |
|
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().half() |
|
video = [video] |
|
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models |
|
question = DEFAULT_IMAGE_TOKEN + "\nPlease describe this video in detail." |
|
conv = copy.deepcopy(conv_templates[conv_template]) |
|
conv.append_message(conv.roles[0], question) |
|
conv.append_message(conv.roles[1], None) |
|
prompt_question = conv.get_prompt() |
|
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) |
|
cont = model.generate( |
|
input_ids, |
|
images=video, |
|
modalities= ["video"], |
|
do_sample=False, |
|
temperature=0, |
|
max_new_tokens=4096, |
|
) |
|
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip() |
|
print(text_outputs) |
|
~~~ |
|
|
|
|
|
## Citation |
|
|
|
``` |
|
@article{UnifiedReward, |
|
title={Unified Reward Model for Multimodal Understanding and Generation.}, |
|
author={Wang, Yibin and Zang, Yuhang, and Li, Hao and Jin, Cheng and Wang Jiaqi}, |
|
journal={arXiv preprint arXiv:2503.05236}, |
|
year={2025} |
|
} |
|
``` |