File size: 10,533 Bytes
cccb5a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from datasets import load_dataset
from sympy import Line2D
from transformers import (
    AutoTokenizer,
    DataCollatorForLanguageModeling,
    AutoModelForMaskedLM,
    TrainingArguments,
    Trainer,
    pipeline,
)
import evaluate
import numpy as np
import torch
import math

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

class MaskedLM():
    def __init__(self):
        self.model = None
        self.metric = None
        self.data_collator = None
        self.raw_data = None
        self.model_checkpoint = None
        self.tokenized_dataset = None
        self.chunk_size = 128
        self.chunks_dataset = None
        self.split_dataset = None
        self.args = None

    def load_dataset(self, name="imdb"):
        self.raw_data = load_dataset(name)
        print("Name of dataset: ", name)
        print(self.raw_data)
    
    def load_support(self, mlm_probability=0.15):
        self.model_checkpoint = "distilbert-base-uncased"
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_checkpoint)
        self.data_collator = DataCollatorForLanguageModeling(tokenizer=self.tokenizer, mlm_probability=mlm_probability)
        print("Name of model checkpoint: " + self.model_checkpoint)
        print("Tokenizer Fast: ", self.tokenizer.is_fast)
        print("Symbol of masked word after tokenizer: ", self.tokenizer.mask_token)
        print("Model max length tokenizer: ", self.tokenizer.model_max_length)
        
    def explore_infoModel(self, k=5):
        model = AutoModelForMaskedLM.from_pretrained(self.model_checkpoint)
        model_parameters = model.num_parameters() / 1000000
        print(f">>> Number of parameters of {self.model_checkpoint}: {round(model_parameters)}M")

        example = "This is a great [MASK]."
        print("\n")
        print(">>> Example: ", example)
        inputs = self.tokenizer(example, return_tensors='pt')
        token_logits = model(**inputs).logits
        print(f"{'Number of tokens: ':<{30}}{ len(inputs.tokens())}")
        print(f"{'Tokens prepare for training: ':<{30}}{ inputs.tokens()}")
        print(f"{'IDs of tokens: ':<{30}}{ inputs.input_ids}")
        print(f"{'Maked IDs of Model: ':<{30}}{self.tokenizer.mask_token_id}")
        print(f"{'Logits of example: ':<{30}}{token_logits}")
        print(f"{'Shape of logits: ':<{30}}{token_logits.size()}")

        '''Find POSITION of [MASK] => EXTRACT LOGIT'''
        mask_token_index = torch.where(inputs.input_ids == self.tokenizer.mask_token_id)[1]
        print(f"{'Position of masked token index: ':<{30}}{mask_token_index}")

        '''Find LOGIT of token in VOCAB suitable for [MASK]'''
        mask_token_logits = token_logits[0, mask_token_index, :]
        print(f"{'Logit of tokens in Vocab for [MASK]: ':<{30}}{mask_token_logits}")

        '''Choose TOP CANDIDATES for [MASK] with highest logits => TOP LOGITS + POSITION of token suitable for [MASK] in VOCAB'''
        top_k_values = torch.topk(mask_token_logits, k, dim=1).values[0].tolist()
        print(f"{'Top value of suitable token in Vocab: ':<{30}}{top_k_values }")
        top_k_tokens = torch.topk(mask_token_logits, k, dim=1).indices[0].tolist()
        print(f"{'Position of suitable token in Vocab: ':<{30}}{top_k_tokens}")

        '''Show TOP CANDIDATES'''
        for token in top_k_tokens:
            print(">>> ", example.replace(self.tokenizer.mask_token, self.tokenizer.decode([token])))


    def get_feature_items(self, set="train", index=0, feature="text"):
        return  None if self.raw_data[set][index][feature] is None or self.raw_data[set][index][feature] == 0 else self.raw_data[set][index][feature]
    
    def get_pair_items(self, set="train", index=0, feature1="text", feature2="label"):
        feature1 = self.get_feature_items(set, index, feature1)
        feature2 = self.get_feature_items(set, index, feature2)
        if feature2 is not None:
            line1 = ""
            line2 = ""
            for word, label in zip(feature1, feature2):
                line1 += str(word)
                line2 += str(label)
            return line1, line2
        
        return feature1, feature1 
    
    def get_tokenizer(self, set="train", index=0, feature="text"):
        inputs = self.tokenizer(self.get_feature_items(set, index, feature))
        return inputs.tokens(), inputs.word_ids()
    
    def tokenizer_dataset(self, example):
        inputs = self.tokenizer(example["text"])
        inputs["word_ids"] = [inputs.word_ids(i) for i in range(len(inputs["input_ids"]))]
        return inputs
    
    def map_tokenize_dataset(self):
        print("Start of processing dataset")
        self.tokenized_dataset = self.raw_data.map(self.tokenizer_dataset, batched=True, remove_columns=["text","label"] )
        print("Done mapping")
        print("Tokenized dataset: ", self.tokenized_dataset)
    
    def group_text_chunk(self, example):
        '''Group all of text'''
        concatenate_example = {k : sum(example[k], []) for k in example.keys()}

        '''Compute the length of all'''
        total_length = len(concatenate_example["input_ids"])
        '''Final length for chunk size'''
        total_length = (total_length // self.chunk_size) *self.chunk_size
    
        '''Divide into chunks with chunk size'''
        chunks = {
            k: [t[i: i + self.chunk_size] for i in range(0, total_length, self.chunk_size)]
            for k, t in concatenate_example.items()
        }

        '''Create LABELS column from INPUT_IDS'''
        chunks["labels"] = chunks["input_ids"].copy()
        return chunks

    def map_chunk_dataset(self):
       print("Start of processing dataset")
       self.chunks_dataset = self.tokenized_dataset.map(self.group_text_chunk, batched=True)
       print("Done mapping")
       print("Chunked dataset: ", self.chunks_dataset)

    def dataset_split(self, test_size=0.2):
        self.split_dataset = self.chunks_dataset["train"].train_test_split(
            test_size=test_size, seed=42
        )
        print("Preparing dataset: ", self.split_dataset)


    def create_model(self):
        print("Start creating model")
        self.model = AutoModelForMaskedLM.from_pretrained(self.model_checkpoint)
        print(self.model)

    def create_argumentTrainer(self, output_dir="fine_tuned_", eval_strategy="epoch", logging_strategy="epoch",
                               learning_rate=2e-5, num_train_epochs=20, weight_decay=0.01, batch_size=64,
                               save_strategy="epoch", push_to_hub=False, hub_model_id="", fp16=True):
        logging_steps = len(self.split_dataset["train"]) // batch_size
        self.args= TrainingArguments(
            #use_cpu=True,
            output_dir=f"{output_dir}{self.model_checkpoint}",
            overwrite_output_dir=True,
            eval_strategy=eval_strategy,
            save_strategy=save_strategy,
            weight_decay=weight_decay,
            learning_rate=learning_rate,
            num_train_epochs=num_train_epochs,
            per_device_train_batch_size=batch_size,
            per_device_eval_batch_size=batch_size,
            push_to_hub=push_to_hub,
            hub_model_id=hub_model_id,
            fp16=fp16,
            logging_steps=logging_steps
        )
        print("Arguments ready for training")
        return self.args
    
    def call_train(self, model_path="pretrained_model_", set_train="train", set_val="test", push_to_hub=False, save_local=False):
        trainer = Trainer(
            model=self.model,
            args=self.args,
            train_dataset=self.split_dataset[set_train],
            eval_dataset=self.split_dataset[set_val],
            data_collator=self.data_collator,
            tokenizer=self.tokenizer,
        )
        eval_result1 = trainer.evaluate()
        print("Perplexity before of training: ", math.exp(eval_result1['eval_loss']))

        print("Start training")
        trainer.train()
        print("Done training")

        eval_result2 = trainer.evaluate()
        print("Perplexity after of training: ", math.exp(eval_result2['eval_loss']))

        if save_local:
            trainer.save_model(model_path+self.model_checkpoint)
            print("Done saving to local")
  
        if push_to_hub:
            trainer.push_to_hub(commit_message="Training complete")
            print("Done pushing push to hub")

    def call_pipeline(self, local=False, path="", example=""):
        if local:
            model_checkpoint = ""
        else:
            model_checkpoint = path
        mask_filler = pipeline(
            "fill-mask",
            model=model_checkpoint,
        )
        print(mask_filler(example))

if __name__ == "__main__":
    '''
        1_LOADING DATASET
    '''
    mlm = MaskedLM()
    mlm.load_dataset()
    print("-"*50, "Exploring information of Supporting", "-"*50)
    mlm.load_support()
    print("-"*50, "Exploring information of Supporting", "-"*50)
    '''
        2_EXPLORING DATASET, MODEL
    '''
    print("-"*50, "Exploring some information of Model", "-"*50)
    mlm.explore_infoModel()
    print("-"*50, "Exploring some information of Model", "-"*50)
    print("Example[0] (text) in dataset: ", mlm.get_feature_items(set="train", index=0, feature="text")[:100] + "...")
    print("Example[0] (label) in dataset: ", mlm.get_feature_items(set="train", index=0, feature="label"))
    line1, line2 = mlm.get_pair_items(set="train", index=1, feature1="text", feature2="label")
    print("--> Inp of Example[1]: ", line1[:20] + "...")
    print("--> Out of Example[1]: ", line2[:20]+ "...")
    '''
        3_PRE-PROCESSING DATASET, COMPUTE METRICS
    '''
    tokens, word_ids = mlm.get_tokenizer(set="train", index=0, feature="text")
    print("Tokens List of Example 0: ",tokens)
    print("Word IDs List of Example 0: ",word_ids)
    mlm.map_tokenize_dataset()
    mlm.map_chunk_dataset()
    mlm.dataset_split()
    '''
        4_INITIALIZATION MODEL
    '''
    print("-"*50, f"Information of {mlm.model_checkpoint}", "-"*50)
    mlm.create_model()
    print("-"*50, f"Information of {mlm.model_checkpoint}", "-"*50)
    '''
        5_SELECTION HYPERPARMETERS
    '''
    mlm.create_argumentTrainer(push_to_hub=True, hub_model_id="Chessmen/"+"fine_tune_" + mlm.model_checkpoint)
    mlm.call_train(save_local=True,push_to_hub=True)
    '''
        6_USE PRE-TRAINED MODEL
    '''
    mlm.call_pipeline(path="Chessmen/fine_tune_distilbert-base-uncased",example= "This is a great [MASK].")