fine_tune_distilbert-base-uncased
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.1226
- Model Preparation Time: 0.0016
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
---|---|---|---|---|
2.5551 | 1.0 | 767 | 2.3648 | 0.0016 |
2.4329 | 2.0 | 1534 | 2.3181 | 0.0016 |
2.3874 | 3.0 | 2301 | 2.2831 | 0.0016 |
2.3409 | 4.0 | 3068 | 2.2422 | 0.0016 |
2.3124 | 5.0 | 3835 | 2.2302 | 0.0016 |
2.2895 | 6.0 | 4602 | 2.2104 | 0.0016 |
2.2649 | 7.0 | 5369 | 2.2014 | 0.0016 |
2.2445 | 8.0 | 6136 | 2.1939 | 0.0016 |
2.234 | 9.0 | 6903 | 2.1776 | 0.0016 |
2.2142 | 10.0 | 7670 | 2.1607 | 0.0016 |
2.208 | 11.0 | 8437 | 2.1682 | 0.0016 |
2.1933 | 12.0 | 9204 | 2.1530 | 0.0016 |
2.1808 | 13.0 | 9971 | 2.1493 | 0.0016 |
2.1689 | 14.0 | 10738 | 2.1422 | 0.0016 |
2.1598 | 15.0 | 11505 | 2.1347 | 0.0016 |
2.1567 | 16.0 | 12272 | 2.1373 | 0.0016 |
2.1458 | 17.0 | 13039 | 2.1270 | 0.0016 |
2.1475 | 18.0 | 13806 | 2.1200 | 0.0016 |
2.141 | 19.0 | 14573 | 2.1312 | 0.0016 |
2.1423 | 20.0 | 15340 | 2.1202 | 0.0016 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.2.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 8
Model tree for Chessmen/fine_tuned_distilbert-base-uncased
Base model
distilbert/distilbert-base-uncased