Chernoffface commited on
Commit
ca271b8
·
verified ·
1 Parent(s): aa4e288

Add SetFit model

Browse files
Files changed (3) hide show
  1. README.md +92 -124
  2. model.safetensors +1 -1
  3. model_head.pkl +1 -1
README.md CHANGED
@@ -9,35 +9,20 @@ base_model: sentence-transformers/paraphrase-mpnet-base-v2
9
  metrics:
10
  - accuracy
11
  widget:
12
- - text: In diesem Seminar an unserer Hochschule erhalten Sie eine umfassende Einführung
13
- in die SCRUM-Methode und ihre Anwendung im agilen Arbeiten.
14
- - text: 'Dazu untersuchen wir grundlegende Programmierkonzepte: wozu sie dienen und
15
- wie sie funtionieren.'
16
- - text: 'Modeling plays a very important role in reconstructing (as far as possible)
17
- the complete and complex picture of the surroundings water systems and offers
18
- a unique way to predict behavior of such multifaceted systems.
19
-
20
-
21
- '
22
- - text: Build an IT-based artifact using recent IoT, robotics, and applied AI technologies.
23
- - text: Sie bietet eine Plattform, um neuartige auf Blockchain Technologie basierende
24
- Anwendungen auf ihre Umsetzbarkeit und Sinnhaftigkeit zu überprüfen.
25
  pipeline_tag: text-classification
26
  inference: false
27
- model-index:
28
- - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
29
- results:
30
- - task:
31
- type: text-classification
32
- name: Text Classification
33
- dataset:
34
- name: Unknown
35
- type: unknown
36
- split: test
37
- metrics:
38
- - type: accuracy
39
- value: 0.5225165562913907
40
- name: Accuracy
41
  ---
42
 
43
  # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
@@ -67,13 +52,6 @@ The model has been trained using an efficient few-shot learning technique that i
67
  - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
68
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
69
 
70
- ## Evaluation
71
-
72
- ### Metrics
73
- | Label | Accuracy |
74
- |:--------|:---------|
75
- | **all** | 0.5225 |
76
-
77
  ## Uses
78
 
79
  ### Direct Use for Inference
@@ -92,7 +70,7 @@ from setfit import SetFitModel
92
  # Download from the 🤗 Hub
93
  model = SetFitModel.from_pretrained("Chernoffface/fs-setfit-multilable-model")
94
  # Run inference
95
- preds = model("Build an IT-based artifact using recent IoT, robotics, and applied AI technologies.")
96
  ```
97
 
98
  <!--
@@ -148,95 +126,85 @@ preds = model("Build an IT-based artifact using recent IoT, robotics, and applie
148
  ### Training Results
149
  | Epoch | Step | Training Loss | Validation Loss |
150
  |:------:|:----:|:-------------:|:---------------:|
151
- | 0.0045 | 1 | 0.1871 | - |
152
- | 0.2273 | 50 | 0.1771 | - |
153
- | 0.4545 | 100 | 0.0978 | - |
154
- | 0.6818 | 150 | 0.0675 | - |
155
- | 0.9091 | 200 | 0.0479 | - |
156
- | 0.0045 | 1 | 0.0274 | - |
157
- | 0.2273 | 50 | 0.0426 | - |
158
- | 0.4545 | 100 | 0.0346 | - |
159
- | 0.6818 | 150 | 0.0375 | - |
160
- | 0.9091 | 200 | 0.0322 | - |
161
- | 0.0003 | 1 | 0.2265 | - |
162
- | 0.0127 | 50 | 0.1776 | - |
163
- | 0.0254 | 100 | 0.1138 | - |
164
- | 0.0380 | 150 | 0.0816 | - |
165
- | 0.0507 | 200 | 0.055 | - |
166
- | 0.0634 | 250 | 0.04 | - |
167
- | 0.0761 | 300 | 0.031 | - |
168
- | 0.0888 | 350 | 0.0227 | - |
169
- | 0.1014 | 400 | 0.0222 | - |
170
- | 0.1141 | 450 | 0.0206 | - |
171
- | 0.1268 | 500 | 0.0191 | - |
172
- | 0.1395 | 550 | 0.0239 | - |
173
- | 0.1522 | 600 | 0.0181 | - |
174
- | 0.1648 | 650 | 0.0263 | - |
175
- | 0.1775 | 700 | 0.0175 | - |
176
- | 0.1902 | 750 | 0.0157 | - |
177
- | 0.2029 | 800 | 0.0178 | - |
178
- | 0.2156 | 850 | 0.0189 | - |
179
- | 0.2283 | 900 | 0.0121 | - |
180
- | 0.2409 | 950 | 0.0203 | - |
181
- | 0.2536 | 1000 | 0.0206 | - |
182
- | 0.2663 | 1050 | 0.013 | - |
183
- | 0.2790 | 1100 | 0.0167 | - |
184
- | 0.2917 | 1150 | 0.0143 | - |
185
- | 0.3043 | 1200 | 0.0151 | - |
186
- | 0.3170 | 1250 | 0.0135 | - |
187
- | 0.3297 | 1300 | 0.0109 | - |
188
- | 0.3424 | 1350 | 0.011 | - |
189
- | 0.3551 | 1400 | 0.0165 | - |
190
- | 0.3677 | 1450 | 0.0133 | - |
191
- | 0.3804 | 1500 | 0.0197 | - |
192
- | 0.3931 | 1550 | 0.012 | - |
193
- | 0.4058 | 1600 | 0.0137 | - |
194
- | 0.4185 | 1650 | 0.0163 | - |
195
- | 0.4311 | 1700 | 0.0089 | - |
196
- | 0.4438 | 1750 | 0.0117 | - |
197
- | 0.4565 | 1800 | 0.0139 | - |
198
- | 0.4692 | 1850 | 0.01 | - |
199
- | 0.4819 | 1900 | 0.0142 | - |
200
- | 0.4945 | 1950 | 0.0094 | - |
201
- | 0.5072 | 2000 | 0.0111 | - |
202
- | 0.5199 | 2050 | 0.0119 | - |
203
- | 0.5326 | 2100 | 0.0089 | - |
204
- | 0.5453 | 2150 | 0.0087 | - |
205
- | 0.5580 | 2200 | 0.007 | - |
206
- | 0.5706 | 2250 | 0.0081 | - |
207
- | 0.5833 | 2300 | 0.016 | - |
208
- | 0.5960 | 2350 | 0.0105 | - |
209
- | 0.6087 | 2400 | 0.0124 | - |
210
- | 0.6214 | 2450 | 0.0059 | - |
211
- | 0.6340 | 2500 | 0.01 | - |
212
- | 0.6467 | 2550 | 0.0054 | - |
213
- | 0.6594 | 2600 | 0.0059 | - |
214
- | 0.6721 | 2650 | 0.0091 | - |
215
- | 0.6848 | 2700 | 0.0133 | - |
216
- | 0.6974 | 2750 | 0.0065 | - |
217
- | 0.7101 | 2800 | 0.0081 | - |
218
- | 0.7228 | 2850 | 0.0078 | - |
219
- | 0.7355 | 2900 | 0.0079 | - |
220
- | 0.7482 | 2950 | 0.01 | - |
221
- | 0.7608 | 3000 | 0.0083 | - |
222
- | 0.7735 | 3050 | 0.0114 | - |
223
- | 0.7862 | 3100 | 0.0076 | - |
224
- | 0.7989 | 3150 | 0.0083 | - |
225
- | 0.8116 | 3200 | 0.0097 | - |
226
- | 0.8242 | 3250 | 0.0077 | - |
227
- | 0.8369 | 3300 | 0.0066 | - |
228
- | 0.8496 | 3350 | 0.0113 | - |
229
- | 0.8623 | 3400 | 0.0065 | - |
230
- | 0.8750 | 3450 | 0.01 | - |
231
- | 0.8876 | 3500 | 0.0098 | - |
232
- | 0.9003 | 3550 | 0.0115 | - |
233
- | 0.9130 | 3600 | 0.0073 | - |
234
- | 0.9257 | 3650 | 0.0104 | - |
235
- | 0.9384 | 3700 | 0.0059 | - |
236
- | 0.9511 | 3750 | 0.006 | - |
237
- | 0.9637 | 3800 | 0.0071 | - |
238
- | 0.9764 | 3850 | 0.0061 | - |
239
- | 0.9891 | 3900 | 0.0076 | - |
240
 
241
  ### Framework Versions
242
  - Python: 3.12.3
 
9
  metrics:
10
  - accuracy
11
  widget:
12
+ - text: How much should I invest in communication activities?
13
+ - text: In addition, we will consider public reactions and reviews of these works.
14
+ - text: Grundlagen der Fachdidaktik Pädagogik
15
+ - text: 'Die Einzelthemen umfassen: * Hard- and Software-Architecture of Modern Game
16
+ Systems * Time Management in Milliseconds * Asset Loading and Compression * Physically
17
+ Based Realtime Rendering and Animations * Handling of Large Game Scenes * Audio
18
+ Simulation and Mixing * Constraint-Based Physics Simulation * Artificial Intelligence
19
+ for Games * Multiplayer-Networking * Procedural Content Creation * Integration
20
+ of Scripting Languages * Optimization and parallelization of CPU and GPU Code
21
+ Die Übungen enthalten Theorie- und Praxisanteile.'
22
+ - text: 'Wie entsteht überhaupt eine Ausstellung und in diesem Fall: eine, die weniger
23
+ auf den Wert des Originals als die Kreativität ihrer Besucher setzt?'
 
24
  pipeline_tag: text-classification
25
  inference: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  ---
27
 
28
  # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
 
52
  - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
53
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
54
 
 
 
 
 
 
 
 
55
  ## Uses
56
 
57
  ### Direct Use for Inference
 
70
  # Download from the 🤗 Hub
71
  model = SetFitModel.from_pretrained("Chernoffface/fs-setfit-multilable-model")
72
  # Run inference
73
+ preds = model("Grundlagen der Fachdidaktik Pädagogik")
74
  ```
75
 
76
  <!--
 
126
  ### Training Results
127
  | Epoch | Step | Training Loss | Validation Loss |
128
  |:------:|:----:|:-------------:|:---------------:|
129
+ | 0.0003 | 1 | 0.2958 | - |
130
+ | 0.0127 | 50 | 0.2471 | - |
131
+ | 0.0254 | 100 | 0.1602 | - |
132
+ | 0.0380 | 150 | 0.0884 | - |
133
+ | 0.0507 | 200 | 0.056 | - |
134
+ | 0.0634 | 250 | 0.0465 | - |
135
+ | 0.0761 | 300 | 0.0431 | - |
136
+ | 0.0888 | 350 | 0.0285 | - |
137
+ | 0.1014 | 400 | 0.0224 | - |
138
+ | 0.1141 | 450 | 0.0281 | - |
139
+ | 0.1268 | 500 | 0.024 | - |
140
+ | 0.1395 | 550 | 0.0271 | - |
141
+ | 0.1522 | 600 | 0.0223 | - |
142
+ | 0.1648 | 650 | 0.0314 | - |
143
+ | 0.1775 | 700 | 0.0213 | - |
144
+ | 0.1902 | 750 | 0.0176 | - |
145
+ | 0.2029 | 800 | 0.0235 | - |
146
+ | 0.2156 | 850 | 0.0227 | - |
147
+ | 0.2283 | 900 | 0.0143 | - |
148
+ | 0.2409 | 950 | 0.0268 | - |
149
+ | 0.2536 | 1000 | 0.0235 | - |
150
+ | 0.2663 | 1050 | 0.0175 | - |
151
+ | 0.2790 | 1100 | 0.0227 | - |
152
+ | 0.2917 | 1150 | 0.0172 | - |
153
+ | 0.3043 | 1200 | 0.0144 | - |
154
+ | 0.3170 | 1250 | 0.0138 | - |
155
+ | 0.3297 | 1300 | 0.0139 | - |
156
+ | 0.3424 | 1350 | 0.0162 | - |
157
+ | 0.3551 | 1400 | 0.019 | - |
158
+ | 0.3677 | 1450 | 0.0167 | - |
159
+ | 0.3804 | 1500 | 0.02 | - |
160
+ | 0.3931 | 1550 | 0.0133 | - |
161
+ | 0.4058 | 1600 | 0.0156 | - |
162
+ | 0.4185 | 1650 | 0.0188 | - |
163
+ | 0.4311 | 1700 | 0.0103 | - |
164
+ | 0.4438 | 1750 | 0.0139 | - |
165
+ | 0.4565 | 1800 | 0.0125 | - |
166
+ | 0.4692 | 1850 | 0.0126 | - |
167
+ | 0.4819 | 1900 | 0.0174 | - |
168
+ | 0.4945 | 1950 | 0.0109 | - |
169
+ | 0.5072 | 2000 | 0.0113 | - |
170
+ | 0.5199 | 2050 | 0.0118 | - |
171
+ | 0.5326 | 2100 | 0.0118 | - |
172
+ | 0.5453 | 2150 | 0.0096 | - |
173
+ | 0.5580 | 2200 | 0.0084 | - |
174
+ | 0.5706 | 2250 | 0.0112 | - |
175
+ | 0.5833 | 2300 | 0.0147 | - |
176
+ | 0.5960 | 2350 | 0.0119 | - |
177
+ | 0.6087 | 2400 | 0.0176 | - |
178
+ | 0.6214 | 2450 | 0.0075 | - |
179
+ | 0.6340 | 2500 | 0.0132 | - |
180
+ | 0.6467 | 2550 | 0.0103 | - |
181
+ | 0.6594 | 2600 | 0.0087 | - |
182
+ | 0.6721 | 2650 | 0.0099 | - |
183
+ | 0.6848 | 2700 | 0.0167 | - |
184
+ | 0.6974 | 2750 | 0.0067 | - |
185
+ | 0.7101 | 2800 | 0.0104 | - |
186
+ | 0.7228 | 2850 | 0.0099 | - |
187
+ | 0.7355 | 2900 | 0.0107 | - |
188
+ | 0.7482 | 2950 | 0.0138 | - |
189
+ | 0.7608 | 3000 | 0.0104 | - |
190
+ | 0.7735 | 3050 | 0.0132 | - |
191
+ | 0.7862 | 3100 | 0.0134 | - |
192
+ | 0.7989 | 3150 | 0.0109 | - |
193
+ | 0.8116 | 3200 | 0.013 | - |
194
+ | 0.8242 | 3250 | 0.015 | - |
195
+ | 0.8369 | 3300 | 0.0071 | - |
196
+ | 0.8496 | 3350 | 0.0118 | - |
197
+ | 0.8623 | 3400 | 0.0107 | - |
198
+ | 0.8750 | 3450 | 0.0106 | - |
199
+ | 0.8876 | 3500 | 0.01 | - |
200
+ | 0.9003 | 3550 | 0.0132 | - |
201
+ | 0.9130 | 3600 | 0.0086 | - |
202
+ | 0.9257 | 3650 | 0.0114 | - |
203
+ | 0.9384 | 3700 | 0.0074 | - |
204
+ | 0.9511 | 3750 | 0.0067 | - |
205
+ | 0.9637 | 3800 | 0.0093 | - |
206
+ | 0.9764 | 3850 | 0.0086 | - |
207
+ | 0.9891 | 3900 | 0.0106 | - |
 
 
 
 
 
 
 
 
 
 
208
 
209
  ### Framework Versions
210
  - Python: 3.12.3
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e7c99ff204a58ae07d43f49a81b58fdc45448a80549b2fb953bd0c3ab4092dc3
3
  size 437967672
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:811d8ab058fabb812582c131b009b30efe27fc347ec28ed8ac66ca2d4aa545a3
3
  size 437967672
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c807fcf656d53d492516233e19fc7a9d21240e42f4d5cf6d4ec1d40ec25f2167
3
  size 72196
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94bf01f7f5276d5ebade043aca79182edc77166ec3ecc2c5487306d4f23ccb25
3
  size 72196