Add SetFit model
Browse files- README.md +125 -12
- config_setfit.json +2 -2
- model.safetensors +1 -1
- model_head.pkl +2 -2
README.md
CHANGED
@@ -9,15 +9,35 @@ base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
-
- text:
|
13 |
-
|
14 |
-
- text: '
|
15 |
-
|
16 |
-
- text:
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
pipeline_tag: text-classification
|
20 |
inference: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
|
23 |
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
@@ -47,6 +67,13 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
47 |
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
48 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
## Uses
|
51 |
|
52 |
### Direct Use for Inference
|
@@ -65,7 +92,7 @@ from setfit import SetFitModel
|
|
65 |
# Download from the 🤗 Hub
|
66 |
model = SetFitModel.from_pretrained("Chernoffface/fs-setfit-multilable-model")
|
67 |
# Run inference
|
68 |
-
preds = model("
|
69 |
```
|
70 |
|
71 |
<!--
|
@@ -97,7 +124,7 @@ preds = model("Probleme losen lernen")
|
|
97 |
### Training Set Metrics
|
98 |
| Training set | Min | Median | Max |
|
99 |
|:-------------|:----|:--------|:----|
|
100 |
-
| Word count |
|
101 |
|
102 |
### Training Hyperparameters
|
103 |
- batch_size: (16, 16)
|
@@ -121,9 +148,95 @@ preds = model("Probleme losen lernen")
|
|
121 |
### Training Results
|
122 |
| Epoch | Step | Training Loss | Validation Loss |
|
123 |
|:------:|:----:|:-------------:|:---------------:|
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
### Framework Versions
|
129 |
- Python: 3.12.3
|
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
+
- text: In diesem Seminar an unserer Hochschule erhalten Sie eine umfassende Einführung
|
13 |
+
in die SCRUM-Methode und ihre Anwendung im agilen Arbeiten.
|
14 |
+
- text: 'Dazu untersuchen wir grundlegende Programmierkonzepte: wozu sie dienen und
|
15 |
+
wie sie funtionieren.'
|
16 |
+
- text: 'Modeling plays a very important role in reconstructing (as far as possible)
|
17 |
+
the complete and complex picture of the surroundings water systems and offers
|
18 |
+
a unique way to predict behavior of such multifaceted systems.
|
19 |
+
|
20 |
+
|
21 |
+
'
|
22 |
+
- text: Build an IT-based artifact using recent IoT, robotics, and applied AI technologies.
|
23 |
+
- text: Sie bietet eine Plattform, um neuartige auf Blockchain Technologie basierende
|
24 |
+
Anwendungen auf ihre Umsetzbarkeit und Sinnhaftigkeit zu überprüfen.
|
25 |
pipeline_tag: text-classification
|
26 |
inference: false
|
27 |
+
model-index:
|
28 |
+
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
29 |
+
results:
|
30 |
+
- task:
|
31 |
+
type: text-classification
|
32 |
+
name: Text Classification
|
33 |
+
dataset:
|
34 |
+
name: Unknown
|
35 |
+
type: unknown
|
36 |
+
split: test
|
37 |
+
metrics:
|
38 |
+
- type: accuracy
|
39 |
+
value: 0.5225165562913907
|
40 |
+
name: Accuracy
|
41 |
---
|
42 |
|
43 |
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
|
|
67 |
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
68 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
69 |
|
70 |
+
## Evaluation
|
71 |
+
|
72 |
+
### Metrics
|
73 |
+
| Label | Accuracy |
|
74 |
+
|:--------|:---------|
|
75 |
+
| **all** | 0.5225 |
|
76 |
+
|
77 |
## Uses
|
78 |
|
79 |
### Direct Use for Inference
|
|
|
92 |
# Download from the 🤗 Hub
|
93 |
model = SetFitModel.from_pretrained("Chernoffface/fs-setfit-multilable-model")
|
94 |
# Run inference
|
95 |
+
preds = model("Build an IT-based artifact using recent IoT, robotics, and applied AI technologies.")
|
96 |
```
|
97 |
|
98 |
<!--
|
|
|
124 |
### Training Set Metrics
|
125 |
| Training set | Min | Median | Max |
|
126 |
|:-------------|:----|:--------|:----|
|
127 |
+
| Word count | 1 | 12.9119 | 131 |
|
128 |
|
129 |
### Training Hyperparameters
|
130 |
- batch_size: (16, 16)
|
|
|
148 |
### Training Results
|
149 |
| Epoch | Step | Training Loss | Validation Loss |
|
150 |
|:------:|:----:|:-------------:|:---------------:|
|
151 |
+
| 0.0045 | 1 | 0.1871 | - |
|
152 |
+
| 0.2273 | 50 | 0.1771 | - |
|
153 |
+
| 0.4545 | 100 | 0.0978 | - |
|
154 |
+
| 0.6818 | 150 | 0.0675 | - |
|
155 |
+
| 0.9091 | 200 | 0.0479 | - |
|
156 |
+
| 0.0045 | 1 | 0.0274 | - |
|
157 |
+
| 0.2273 | 50 | 0.0426 | - |
|
158 |
+
| 0.4545 | 100 | 0.0346 | - |
|
159 |
+
| 0.6818 | 150 | 0.0375 | - |
|
160 |
+
| 0.9091 | 200 | 0.0322 | - |
|
161 |
+
| 0.0003 | 1 | 0.2265 | - |
|
162 |
+
| 0.0127 | 50 | 0.1776 | - |
|
163 |
+
| 0.0254 | 100 | 0.1138 | - |
|
164 |
+
| 0.0380 | 150 | 0.0816 | - |
|
165 |
+
| 0.0507 | 200 | 0.055 | - |
|
166 |
+
| 0.0634 | 250 | 0.04 | - |
|
167 |
+
| 0.0761 | 300 | 0.031 | - |
|
168 |
+
| 0.0888 | 350 | 0.0227 | - |
|
169 |
+
| 0.1014 | 400 | 0.0222 | - |
|
170 |
+
| 0.1141 | 450 | 0.0206 | - |
|
171 |
+
| 0.1268 | 500 | 0.0191 | - |
|
172 |
+
| 0.1395 | 550 | 0.0239 | - |
|
173 |
+
| 0.1522 | 600 | 0.0181 | - |
|
174 |
+
| 0.1648 | 650 | 0.0263 | - |
|
175 |
+
| 0.1775 | 700 | 0.0175 | - |
|
176 |
+
| 0.1902 | 750 | 0.0157 | - |
|
177 |
+
| 0.2029 | 800 | 0.0178 | - |
|
178 |
+
| 0.2156 | 850 | 0.0189 | - |
|
179 |
+
| 0.2283 | 900 | 0.0121 | - |
|
180 |
+
| 0.2409 | 950 | 0.0203 | - |
|
181 |
+
| 0.2536 | 1000 | 0.0206 | - |
|
182 |
+
| 0.2663 | 1050 | 0.013 | - |
|
183 |
+
| 0.2790 | 1100 | 0.0167 | - |
|
184 |
+
| 0.2917 | 1150 | 0.0143 | - |
|
185 |
+
| 0.3043 | 1200 | 0.0151 | - |
|
186 |
+
| 0.3170 | 1250 | 0.0135 | - |
|
187 |
+
| 0.3297 | 1300 | 0.0109 | - |
|
188 |
+
| 0.3424 | 1350 | 0.011 | - |
|
189 |
+
| 0.3551 | 1400 | 0.0165 | - |
|
190 |
+
| 0.3677 | 1450 | 0.0133 | - |
|
191 |
+
| 0.3804 | 1500 | 0.0197 | - |
|
192 |
+
| 0.3931 | 1550 | 0.012 | - |
|
193 |
+
| 0.4058 | 1600 | 0.0137 | - |
|
194 |
+
| 0.4185 | 1650 | 0.0163 | - |
|
195 |
+
| 0.4311 | 1700 | 0.0089 | - |
|
196 |
+
| 0.4438 | 1750 | 0.0117 | - |
|
197 |
+
| 0.4565 | 1800 | 0.0139 | - |
|
198 |
+
| 0.4692 | 1850 | 0.01 | - |
|
199 |
+
| 0.4819 | 1900 | 0.0142 | - |
|
200 |
+
| 0.4945 | 1950 | 0.0094 | - |
|
201 |
+
| 0.5072 | 2000 | 0.0111 | - |
|
202 |
+
| 0.5199 | 2050 | 0.0119 | - |
|
203 |
+
| 0.5326 | 2100 | 0.0089 | - |
|
204 |
+
| 0.5453 | 2150 | 0.0087 | - |
|
205 |
+
| 0.5580 | 2200 | 0.007 | - |
|
206 |
+
| 0.5706 | 2250 | 0.0081 | - |
|
207 |
+
| 0.5833 | 2300 | 0.016 | - |
|
208 |
+
| 0.5960 | 2350 | 0.0105 | - |
|
209 |
+
| 0.6087 | 2400 | 0.0124 | - |
|
210 |
+
| 0.6214 | 2450 | 0.0059 | - |
|
211 |
+
| 0.6340 | 2500 | 0.01 | - |
|
212 |
+
| 0.6467 | 2550 | 0.0054 | - |
|
213 |
+
| 0.6594 | 2600 | 0.0059 | - |
|
214 |
+
| 0.6721 | 2650 | 0.0091 | - |
|
215 |
+
| 0.6848 | 2700 | 0.0133 | - |
|
216 |
+
| 0.6974 | 2750 | 0.0065 | - |
|
217 |
+
| 0.7101 | 2800 | 0.0081 | - |
|
218 |
+
| 0.7228 | 2850 | 0.0078 | - |
|
219 |
+
| 0.7355 | 2900 | 0.0079 | - |
|
220 |
+
| 0.7482 | 2950 | 0.01 | - |
|
221 |
+
| 0.7608 | 3000 | 0.0083 | - |
|
222 |
+
| 0.7735 | 3050 | 0.0114 | - |
|
223 |
+
| 0.7862 | 3100 | 0.0076 | - |
|
224 |
+
| 0.7989 | 3150 | 0.0083 | - |
|
225 |
+
| 0.8116 | 3200 | 0.0097 | - |
|
226 |
+
| 0.8242 | 3250 | 0.0077 | - |
|
227 |
+
| 0.8369 | 3300 | 0.0066 | - |
|
228 |
+
| 0.8496 | 3350 | 0.0113 | - |
|
229 |
+
| 0.8623 | 3400 | 0.0065 | - |
|
230 |
+
| 0.8750 | 3450 | 0.01 | - |
|
231 |
+
| 0.8876 | 3500 | 0.0098 | - |
|
232 |
+
| 0.9003 | 3550 | 0.0115 | - |
|
233 |
+
| 0.9130 | 3600 | 0.0073 | - |
|
234 |
+
| 0.9257 | 3650 | 0.0104 | - |
|
235 |
+
| 0.9384 | 3700 | 0.0059 | - |
|
236 |
+
| 0.9511 | 3750 | 0.006 | - |
|
237 |
+
| 0.9637 | 3800 | 0.0071 | - |
|
238 |
+
| 0.9764 | 3850 | 0.0061 | - |
|
239 |
+
| 0.9891 | 3900 | 0.0076 | - |
|
240 |
|
241 |
### Framework Versions
|
242 |
- Python: 3.12.3
|
config_setfit.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
-
"
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437967672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7c99ff204a58ae07d43f49a81b58fdc45448a80549b2fb953bd0c3ab4092dc3
|
3 |
size 437967672
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c807fcf656d53d492516233e19fc7a9d21240e42f4d5cf6d4ec1d40ec25f2167
|
3 |
+
size 72196
|