CheeLi03's picture
Upload tokenizer
7f3266c verified
---
base_model: openai/whisper-tiny
datasets:
- fleurs
language:
- ja
license: apache-2.0
metrics:
- wer
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: Whisper Tiny Japanese - Chee Li
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Google Fleurs
type: fleurs
config: ja_jp
split: None
args: 'config: ja split: test'
metrics:
- type: wer
value: 347.58418740849197
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny Japanese - Chee Li
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Google Fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8285
- Wer: 347.5842
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| 0.161 | 6.25 | 1000 | 0.6874 | 1070.8638 |
| 0.0196 | 12.5 | 2000 | 0.7621 | 1201.0249 |
| 0.0063 | 18.75 | 3000 | 0.8127 | 416.8375 |
| 0.0046 | 25.0 | 4000 | 0.8285 | 347.5842 |
### Framework versions
- Transformers 4.43.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1