yamildiego's picture
add init
041d81f
raw
history blame
2.14 kB
from typing import Dict, List, Any
import base64
from PIL import Image
from io import BytesIO
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
import torch
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
# # set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
# set mixed precision dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
class EndpointHandler():
def __init__(self, path=""):
# self.stable_diffusion_id = "Lykon/dreamshaper-8"
# self.prior_pipeline = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype)#.to(device)
# self.decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=dtype)#.to(device)
self.generator = torch.Generator(device=device.type).manual_seed(3)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
# import torch
device = "cuda"
num_images_per_prompt = 2
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to(device)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.float16).to(device)
prompt = "Anthropomorphic cat dressed as a pilot"
negative_prompt = ""
prior_output = prior(
prompt=prompt,
height=1024,
width=1024,
negative_prompt=negative_prompt,
guidance_scale=4.0,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=20
)
decoder_output = decoder(
image_embeddings=prior_output.image_embeddings.half(),
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=0.0,
output_type="pil",
num_inference_steps=10
).images
return decoder_output