File size: 2,135 Bytes
1f7551f 69481a1 1f7551f 3a07267 1f7551f a9ef0f5 061d7a5 041d81f 69481a1 3a07267 69481a1 e0d4444 041d81f 3a07267 041d81f 69481a1 69d41c4 69481a1 e0d4444 69481a1 e0d4444 69481a1 e0d4444 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
from typing import Dict, List, Any
import base64
from PIL import Image
from io import BytesIO
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
import torch
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
# # set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
# set mixed precision dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
class EndpointHandler():
def __init__(self, path=""):
# self.stable_diffusion_id = "Lykon/dreamshaper-8"
# self.prior_pipeline = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype)#.to(device)
# self.decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=dtype)#.to(device)
self.generator = torch.Generator(device=device.type).manual_seed(3)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
# import torch
device = "cuda"
num_images_per_prompt = 2
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to(device)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.float16).to(device)
prompt = "Anthropomorphic cat dressed as a pilot"
negative_prompt = ""
prior_output = prior(
prompt=prompt,
height=1024,
width=1024,
negative_prompt=negative_prompt,
guidance_scale=4.0,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=20
)
decoder_output = decoder(
image_embeddings=prior_output.image_embeddings.half(),
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=0.0,
output_type="pil",
num_inference_steps=10
).images
return decoder_output
|