Commit
·
e0d4444
1
Parent(s):
b792488
test implementation stable cascade
Browse files- handler.py +54 -20
handler.py
CHANGED
|
@@ -4,6 +4,7 @@ from PIL import Image
|
|
| 4 |
from io import BytesIO
|
| 5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
| 6 |
from diffusers import StableDiffusionPipeline
|
|
|
|
| 7 |
|
| 8 |
import torch
|
| 9 |
|
|
@@ -20,6 +21,10 @@ class EndpointHandler():
|
|
| 20 |
self.stable_diffusion_id = "Lykon/dreamshaper-8"
|
| 21 |
self.pipe = StableDiffusionPipeline.from_pretrained(self.stable_diffusion_id,torch_dtype=dtype,safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to(device.type)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
self.generator = torch.Generator(device=device.type).manual_seed(3)
|
| 24 |
|
| 25 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
|
@@ -27,25 +32,54 @@ class EndpointHandler():
|
|
| 27 |
# :param data: A dictionary contains `inputs` and optional `image` field.
|
| 28 |
# :return: A dictionary with `image` field contains image in base64.
|
| 29 |
# """
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
# run inference pipeline
|
| 38 |
-
out = self.pipe(
|
| 39 |
-
prompt=prompt,
|
| 40 |
-
negative_prompt=negative_prompt,
|
| 41 |
-
num_inference_steps=num_inference_steps,
|
| 42 |
-
guidance_scale=guidance_scale,
|
| 43 |
-
num_images_per_prompt=1,
|
| 44 |
-
height=height,
|
| 45 |
-
width=width,
|
| 46 |
-
generator=self.generator
|
| 47 |
-
)
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
| 4 |
from io import BytesIO
|
| 5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
| 6 |
from diffusers import StableDiffusionPipeline
|
| 7 |
+
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
| 8 |
|
| 9 |
import torch
|
| 10 |
|
|
|
|
| 21 |
self.stable_diffusion_id = "Lykon/dreamshaper-8"
|
| 22 |
self.pipe = StableDiffusionPipeline.from_pretrained(self.stable_diffusion_id,torch_dtype=dtype,safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to(device.type)
|
| 23 |
|
| 24 |
+
self.prior_pipeline = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype)#.to(device)
|
| 25 |
+
self.decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=dtype)#.to(device)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
self.generator = torch.Generator(device=device.type).manual_seed(3)
|
| 29 |
|
| 30 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
|
|
|
| 32 |
# :param data: A dictionary contains `inputs` and optional `image` field.
|
| 33 |
# :return: A dictionary with `image` field contains image in base64.
|
| 34 |
# """
|
| 35 |
+
prompt = data.pop("inputs", None)
|
| 36 |
+
num_inference_steps = data.pop("num_inference_steps", 30)
|
| 37 |
+
guidance_scale = data.pop("guidance_scale", 7.4)
|
| 38 |
+
negative_prompt = data.pop("negative_prompt", None)
|
| 39 |
+
height = data.pop("height", None)
|
| 40 |
+
width = data.pop("width", None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
# # run inference pipeline
|
| 43 |
+
# out = self.pipe(
|
| 44 |
+
# prompt=prompt,
|
| 45 |
+
# negative_prompt=negative_prompt,
|
| 46 |
+
# num_inference_steps=num_inference_steps,
|
| 47 |
+
# guidance_scale=guidance_scale,
|
| 48 |
+
# num_images_per_prompt=1,
|
| 49 |
+
# height=height,
|
| 50 |
+
# width=width,
|
| 51 |
+
# generator=self.generator
|
| 52 |
+
# )
|
| 53 |
+
|
| 54 |
+
self.prior_pipeline.to(device)
|
| 55 |
+
self.decoder_pipeline.to(device)
|
| 56 |
+
|
| 57 |
+
prior_output = prior_pipeline(
|
| 58 |
+
prompt=prompt,
|
| 59 |
+
height=height,
|
| 60 |
+
width=width,
|
| 61 |
+
num_inference_steps=num_inference_steps,
|
| 62 |
+
# timesteps=DEFAULT_STAGE_C_TIMESTEPS,
|
| 63 |
+
negative_prompt=negative_prompt,
|
| 64 |
+
guidance_scale=guidance_scale,
|
| 65 |
+
num_images_per_prompt=1,
|
| 66 |
+
generator=self.generator,
|
| 67 |
+
# callback=callback_prior,
|
| 68 |
+
# callback_steps=callback_steps
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
decoder_output = self.decoder_pipeline(
|
| 73 |
+
image_embeddings=prior_output.image_embeddings,
|
| 74 |
+
prompt=prompt,
|
| 75 |
+
num_inference_steps=num_inference_steps,
|
| 76 |
+
# timesteps=decoder_timesteps,
|
| 77 |
+
guidance_scale=guidance_scale,
|
| 78 |
+
negative_prompt=negative_prompt,
|
| 79 |
+
generator=self.generator,
|
| 80 |
+
output_type="pil",
|
| 81 |
+
).images
|
| 82 |
|
| 83 |
+
return decoder_output[0]
|
| 84 |
+
|
| 85 |
+
|