File size: 3,225 Bytes
1f7551f 3a07267 e0d4444 1f7551f 3a07267 1f7551f a9ef0f5 061d7a5 3a07267 e0d4444 3a07267 e0d4444 69d41c4 e0d4444 b792488 e0d4444 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
from typing import Dict, List, Any
import base64
from PIL import Image
from io import BytesIO
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers import StableDiffusionPipeline
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
import torch
# # set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
# set mixed precision dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
class EndpointHandler():
def __init__(self, path=""):
self.stable_diffusion_id = "Lykon/dreamshaper-8"
self.pipe = StableDiffusionPipeline.from_pretrained(self.stable_diffusion_id,torch_dtype=dtype,safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to(device.type)
self.prior_pipeline = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype)#.to(device)
self.decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=dtype)#.to(device)
self.generator = torch.Generator(device=device.type).manual_seed(3)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
# """
# :param data: A dictionary contains `inputs` and optional `image` field.
# :return: A dictionary with `image` field contains image in base64.
# """
prompt = data.pop("inputs", None)
num_inference_steps = data.pop("num_inference_steps", 30)
guidance_scale = data.pop("guidance_scale", 7.4)
negative_prompt = data.pop("negative_prompt", None)
height = data.pop("height", None)
width = data.pop("width", None)
# # run inference pipeline
# out = self.pipe(
# prompt=prompt,
# negative_prompt=negative_prompt,
# num_inference_steps=num_inference_steps,
# guidance_scale=guidance_scale,
# num_images_per_prompt=1,
# height=height,
# width=width,
# generator=self.generator
# )
self.prior_pipeline.to(device)
self.decoder_pipeline.to(device)
prior_output = prior_pipeline(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
# timesteps=DEFAULT_STAGE_C_TIMESTEPS,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=self.generator,
# callback=callback_prior,
# callback_steps=callback_steps
)
decoder_output = self.decoder_pipeline(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
num_inference_steps=num_inference_steps,
# timesteps=decoder_timesteps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
generator=self.generator,
output_type="pil",
).images
return decoder_output[0]
|