File size: 3,225 Bytes
1f7551f
 
 
 
 
3a07267
e0d4444
1f7551f
 
 
 
3a07267
1f7551f
 
 
 
 
a9ef0f5
061d7a5
3a07267
 
 
 
e0d4444
 
 
 
3a07267
 
 
 
 
 
 
e0d4444
 
 
 
 
 
69d41c4
e0d4444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b792488
e0d4444
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from typing import  Dict, List, Any
import base64
from PIL import Image
from io import BytesIO
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers import StableDiffusionPipeline
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline

import torch


# # set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
    raise ValueError("need to run on GPU")
# set mixed precision dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16

class EndpointHandler():
     def __init__(self, path=""):
         self.stable_diffusion_id = "Lykon/dreamshaper-8"
         self.pipe = StableDiffusionPipeline.from_pretrained(self.stable_diffusion_id,torch_dtype=dtype,safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to(device.type)

         self.prior_pipeline = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype)#.to(device)
         self.decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade",  torch_dtype=dtype)#.to(device) 


         self.generator = torch.Generator(device=device.type).manual_seed(3)

     def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
#         """
#         :param data: A dictionary contains `inputs` and optional `image` field.
#         :return: A dictionary with `image` field contains image in base64.
#         """
        prompt = data.pop("inputs", None)
        num_inference_steps = data.pop("num_inference_steps", 30)
        guidance_scale = data.pop("guidance_scale", 7.4)
        negative_prompt = data.pop("negative_prompt", None)
        height = data.pop("height", None)
        width = data.pop("width", None)

        # # run inference pipeline
        #  out = self.pipe(
        #     prompt=prompt, 
        #     negative_prompt=negative_prompt,
        #     num_inference_steps=num_inference_steps, 
        #     guidance_scale=guidance_scale,
        #     num_images_per_prompt=1,
        #     height=height,
        #     width=width,
        #     generator=self.generator
        # )
        
        self.prior_pipeline.to(device)
        self.decoder_pipeline.to(device)
        
        prior_output = prior_pipeline(
        prompt=prompt,
        height=height,
        width=width,
        num_inference_steps=num_inference_steps,
        # timesteps=DEFAULT_STAGE_C_TIMESTEPS,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=self.generator,
        # callback=callback_prior,
        # callback_steps=callback_steps
        )
        
        
        decoder_output = self.decoder_pipeline(
        image_embeddings=prior_output.image_embeddings,
        prompt=prompt,
        num_inference_steps=num_inference_steps,
        # timesteps=decoder_timesteps,
        guidance_scale=guidance_scale,
        negative_prompt=negative_prompt,
        generator=self.generator,
        output_type="pil",
        ).images
        
        return decoder_output[0]