|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- dair-ai/emotion |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
tags: |
|
- emotion |
|
--- |
|
# Model |
|
|
|
Model IA Berta_Base_Uncased entrened with dateset emotion |
|
|
|
## Model Details |
|
|
|
Model Base: bert_base_uncased |
|
|
|
dataset: dair-ai/emotion |
|
|
|
Config train: |
|
|
|
num_train_epochs= 8 |
|
learning_rate= 2e-5 |
|
weight_decay=0.01 |
|
batch_size: 64 |
|
|
|
## Eval Exam |
|
```json |
|
{ |
|
'test_loss': 0.14830373227596283 |
|
'test_accuracy': 0.9415 |
|
'test_f1': 0.9411005763302622 |
|
'test_runtime': 8.372 |
|
'test_samples_per_second': 238.892 |
|
'test_steps_per_second': 3.822 |
|
} |
|
``` |
|
|
|
## How to Use the model: |
|
```python |
|
from transformers import pipeline |
|
model_path = "daveni/twitter-xlm-roberta-emotion-es" |
|
emotion_analysis = pipeline("text-classification", framework="pt", model=model_path, tokenizer=model_path) |
|
emotion_analysis("Einstein dijo: Solo hay dos cosas infinitas, el universo y los pinches anuncios de bitcoin en Twitter. Paren ya carajo aaaaaaghhgggghhh me quiero murir") |
|
``` |
|
``` |
|
[{'label': 'anger', 'score': 0.48307016491889954}] |
|
``` |
|
## Full classification example |
|
```python |
|
from transformers import AutoModelForSequenceClassification |
|
from transformers import AutoTokenizer, AutoConfig |
|
import numpy as np |
|
from scipy.special import softmax |
|
# Preprocess text (username and link placeholders) |
|
def preprocess(text): |
|
new_text = [] |
|
for t in text.split(" "): |
|
t = '@user' if t.startswith('@') and len(t) > 1 else t |
|
t = 'http' if t.startswith('http') else t |
|
new_text.append(t) |
|
return " ".join(new_text) |
|
model_path = "Cesar42/bert-base-uncased-emotion_v2" |
|
tokenizer = AutoTokenizer.from_pretrained(model_path ) |
|
config = AutoConfig.from_pretrained(model_path ) |
|
# PT |
|
model = AutoModelForSequenceClassification.from_pretrained(model_path ) |
|
text = "Se ha quedao bonito día para publicar vídeo, ¿no? Hoy del tema más diferente que hemos tocado en el canal." |
|
text = preprocess(text) |
|
print(text) |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
scores = output[0][0].detach().numpy() |
|
scores = softmax(scores) |
|
# Print labels and scores |
|
ranking = np.argsort(scores) |
|
ranking = ranking[::-1] |
|
for i in range(scores.shape[0]): |
|
l = config.id2label[ranking[i]] |
|
s = scores[ranking[i]] |
|
print(f"{i+1}) {l} {np.round(float(s), 4)}") |
|
``` |
|
Output: |
|
|
|
``` |
|
Se ha quedao bonito día para publicar vídeo, ¿no? Hoy del tema más diferente que hemos tocado en el canal. |
|
1) joy 0.7887 |
|
2) others 0.1679 |
|
3) surprise 0.0152 |
|
4) sadness 0.0145 |
|
5) anger 0.0077 |
|
6) disgust 0.0033 |
|
7) fear 0.0027 |
|
``` |
|
|
|
### Referece |
|
|
|
* bhadresh-savani/bert-base-uncased-emotion |
|
* [Colab Notebook](https://github.com/bhadreshpsavani/ExploringSentimentalAnalysis/blob/main/SentimentalAnalysisWithDistilbert.ipynb). bhadresh-savani |
|
|
|
|
|
|
|
|
|
|