elselse commited on
Commit
7e7203f
·
verified ·
1 Parent(s): 52ab3c7

End of training

Browse files
Files changed (3) hide show
  1. README.md +20 -13
  2. emissions.csv +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -9,8 +9,6 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-chinese-macbert-base
11
  results: []
12
- datasets:
13
- - CIRCL/Vulnerability-CNVD
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,13 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # vulnerability-severity-classification-chinese-macbert-base
20
 
21
- This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on the dataset [CIRCL/Vulnerability-CNVD](https://huggingface.co/datasets/CIRCL/Vulnerability-CNVD).
 
 
 
22
 
23
- You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.
24
 
25
- It achieves the following results on the evaluation set:
26
- - Loss: 0.6177
27
- - Accuracy: 0.7801
 
 
 
 
 
 
28
 
29
  ## Training procedure
30
 
@@ -43,11 +50,11 @@ The following hyperparameters were used during training:
43
 
44
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
45
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
46
- | 0.6391 | 1.0 | 3388 | 0.5728 | 0.7547 |
47
- | 0.6062 | 2.0 | 6776 | 0.5545 | 0.7704 |
48
- | 0.5545 | 3.0 | 10164 | 0.5357 | 0.7819 |
49
- | 0.3597 | 4.0 | 13552 | 0.5709 | 0.7820 |
50
- | 0.327 | 5.0 | 16940 | 0.6177 | 0.7801 |
51
 
52
 
53
  ### Framework versions
@@ -55,4 +62,4 @@ The following hyperparameters were used during training:
55
  - Transformers 4.51.3
56
  - Pytorch 2.7.1+cu126
57
  - Datasets 3.6.0
58
- - Tokenizers 0.21.1
 
9
  model-index:
10
  - name: vulnerability-severity-classification-chinese-macbert-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # vulnerability-severity-classification-chinese-macbert-base
18
 
19
+ This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.5994
22
+ - Accuracy: 0.7900
23
 
24
+ ## Model description
25
 
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
53
+ | 0.65 | 1.0 | 3388 | 0.5772 | 0.7561 |
54
+ | 0.582 | 2.0 | 6776 | 0.5656 | 0.7620 |
55
+ | 0.5284 | 3.0 | 10164 | 0.5274 | 0.7881 |
56
+ | 0.3406 | 4.0 | 13552 | 0.5555 | 0.7869 |
57
+ | 0.3224 | 5.0 | 16940 | 0.5994 | 0.7900 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.51.3
63
  - Pytorch 2.7.1+cu126
64
  - Datasets 3.6.0
65
+ - Tokenizers 0.21.1
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-06-30T11:52:22,codecarbon,0e289da9-d45c-4fea-a0b8-1775cda9cf46,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,5728.429068184923,0.10835683297338093,1.8915627946793143e-05,42.5,454.91915669717054,94.34468364715576,0.06758234387103264,0.8117899213758335,0.15001919208743872,1.0293914573343048,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-07-03T08:48:19,codecarbon,6b6ee9a5-bd5e-4b19-a09c-85d1371fcaf6,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,5843.158349264413,0.11051319342331094,1.8913263481422386e-05,42.5,416.29527770671575,94.34468364715576,0.06893670656428569,0.8279147587201692,0.15302544705236684,1.0498769123368223,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:36f7a4948df2343448083cc733bda2647d675c74ed1d3f35874f11f21d4513c8
3
  size 409103316
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15e82635a3ad2169c9f0892412f05e344bbfe290f4375fb58e5c85549144e722
3
  size 409103316