File size: 6,102 Bytes
719463c dc2c8ff 719463c dc2c8ff af5b59f f2b6b14 dc2c8ff e7eb7cc f2b6b14 e18745b f2b6b14 f331153 af5b59f 719463c dc2c8ff e7eb7cc 719463c af5b59f e7eb7cc e18745b eb47d97 e18745b af5b59f e18745b af5b59f e18745b c0cefa4 e7eb7cc e18745b c0cefa4 af5b59f eb47d97 af5b59f eb47d97 e7eb7cc af5b59f e18745b af5b59f e18745b c0cefa4 e18745b c0cefa4 e18745b 5f003c5 e18745b 5f003c5 e18745b 5f003c5 a4a2d18 5f003c5 af5b59f e18745b af5b59f e18745b e7eb7cc b145655 e18745b af5b59f b145655 af5b59f e7eb7cc af5b59f e7eb7cc 926ab80 af5b59f e7eb7cc af5b59f 79b7d07 e7eb7cc e18745b e7eb7cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
library_name: peft
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
- multilingual
- ASR
- Open-Source
language:
- wo
- fr
- en
model-index:
- name: whosper-large-v2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Test Set
type: custom
split: test
args:
language: wo
metrics:
- name: Test WER
type: wer
value: 23.45
- name: Test CER
type: cer
value: 11.01
pipeline_tag: automatic-speech-recognition
---
# Whosper-large-v2
## Model Overview
Whosper-large-v2 is a cutting-edge speech recognition model tailored for Wolof, Senegal's primary language. Built on OpenAI's [Whisper-large-v2](https://huggingface.co/openai/whisper-large-v2), it advances African language processing with notable improvements in Word Error Rate (WER) and Character Error Rate (CER). Whether you're transcribing conversations, building language learning tools, or conducting research, this model is designed for researchers, developers, and students working with Wolof speech data.
### Key Strengths
- **Superior Code-Switching**: Handles natural Wolof-French/English mixing, mirroring real-world speech patterns
- **Multilingual**: Performs well in French and English in addition to Wolof
- **Production-Ready**: Thoroughly tested and optimized for deployment
- **Open Source**: Released under the [apache-2.0](https://www.apache.org/licenses/LICENSE-2.0) license, perfect for research and development
- **African NLP Focus**: Contributing to the broader goal of comprehensive African language support
## Performance Metrics
- **WER**: 0.2345
- **CER**: 0.1101
Lower values mean better accuracy—ideal for practical applications!
### Performance Comparison
| Metric | Whosper-large-v2 | Whosper-large | Improvement |
|--------|------------------|---------------|-------------|
| WER | 0.2345 | 0.2423 | 3.2% better |
| CER | 0.1101 | 0.1135 | 3.0% better |
## Key Features
- Improved WER and CER compared to [whosper-large](https://huggingface.co/sudoping01/whosper-large)
- Optimized for Wolof and French recognition
- Enhanced performance on bilingual content
## Limitations
- Reduced performance on English compared to [whosper-large](https://huggingface.co/sudoping01/whosper-large)
- Less effective for general multilingual content compared to [whosper-large](https://huggingface.co/sudoping01/whosper-large)
- Low performances on very bad audios quality
## Training Data
Trained on diverse Wolof speech data:
- **ALFFA Public Dataset**
- **FLEURS Dataset**
- **Bus Urbain Dataset**
- **Anta Women TTS Dataset**
- **Kallama Dataset**
This diversity ensures the model excels across:
- Speaking styles and dialects
- Code-switching patterns
- Gender and age groups
- Recording conditions
## Quick Start Guide
### Installation
```bash
pip install git+https://github.com/sudoping01/[email protected]
```
### Basic Usage
```python
from whosper import WhosperTranscriber
# Initialize the transcriber
transcriber = WhosperTranscriber(model_id="CAYTU/whosper-large-v2")
# Transcribe an audio file
result = transcriber.transcribe_audio("path/to/your/audio.wav")
print(result)
```
### Training Results
| Training Loss | Epoch | Step | Validation Loss |
|---------------|-------|------|-----------------|
| 0.7575 | 0.9998 | 2354 | 0.7068 |
| 0.6429 | 1.9998 | 4708 | 0.6073 |
| 0.5468 | 2.9998 | 7062 | 0.5428 |
| 0.4439 | 3.9998 | 9416 | 0.4935 |
| 0.3208 | 4.9998 | 11770 | 0.4600 |
| 0.2394 | 5.9998 | 14124 | 0.4490 |
## Framework Versions
- PEFT: 0.14.1.dev0
- Transformers: 4.49.0.dev0
- PyTorch: 2.5.1+cu124
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Contributing to African NLP
Whosper-large-v2 embodies our commitment to open science and the advancement of African language technologies. We believe that by making cutting-edge speech recognition models freely available, we can accelerate NLP development across Africa.
Join our mission to democratize AI technology:
- **Open Science**: Use and build upon our research - all code, models, and documentation are open source
- **Data Contribution**: Share your Wolof speech datasets to help improve model performance
- **Research Collaboration**: Integrate Whosper into your research projects and share your findings
- **Community Building**: Help us create resources for African language processing
- **Educational Impact**: Use Whosper in educational settings to train the next generation of African AI researchers
Together, we can ensure African languages are well-represented in the future of AI technology. Whether you're a researcher, developer, educator, or language enthusiast, your contributions can help bridge the technological divide.
## License
[Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0)
This model is released under the Apache 2.0 license to encourage research, commercial use, and innovation in African language technologies while ensuring proper attribution and patent protection. You are free to:
- Use the model commercially
- Modify and distribute the model
- Create derivative works
- Use the model for patent purposes
Choosing Apache 2.0 aligns with our goals of open science and advancing African NLP while providing necessary protections for the community.
## Citation
```bibtex
@misc{whosper2025,
title={Whosper-large: A Multilingual ASR Model for Wolof with Enhanced Code-Switching Capabilities},
author={Seydou DIALLO},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/CAYTU/whosper-large},
version={1.0}
}
```
## Acknowledgments
Developed by [Seydou DIALLO](https://www.linkedin.com/in/seydou-diallo-08ab311ba) at [Caytu Robotics](https://caytu.ai)'s AI Department, building on OpenAI's [Whisper-large-v2](https://huggingface.co/openai/whisper-large-v2). Special thanks to the Wolof-speaking community and contributors advancing African language technology.
## Contact US
For any question or support contact us
Email : [email protected] |