sudoping01 commited on
Commit
af5b59f
·
verified ·
1 Parent(s): 719463c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -57
README.md CHANGED
@@ -1,68 +1,112 @@
1
  ---
2
  library_name: peft
3
- license: apache-2.0
4
  base_model: openai/whisper-large-v2
5
  tags:
6
  - generated_from_trainer
 
 
 
 
 
 
 
7
  model-index:
8
  - name: whosper-large-v3
9
  results: []
 
 
 
 
 
 
 
 
10
  ---
 
11
 
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
-
15
- # whosper-large-v3
16
-
17
- This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset.
18
- It achieves the following results on the evaluation set:
19
- - Loss: 0.4490
20
-
21
- ## Model description
22
-
23
- More information needed
24
-
25
- ## Intended uses & limitations
26
-
27
- More information needed
28
-
29
- ## Training and evaluation data
30
-
31
- More information needed
32
-
33
- ## Training procedure
34
-
35
- ### Training hyperparameters
36
-
37
- The following hyperparameters were used during training:
38
- - learning_rate: 0.001
39
- - train_batch_size: 8
40
- - eval_batch_size: 8
41
- - seed: 42
42
- - gradient_accumulation_steps: 4
43
- - total_train_batch_size: 32
44
- - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
45
- - lr_scheduler_type: linear
46
- - lr_scheduler_warmup_steps: 50
47
- - num_epochs: 6
48
- - mixed_precision_training: Native AMP
49
-
50
- ### Training results
51
-
52
- | Training Loss | Epoch | Step | Validation Loss |
53
- |:-------------:|:------:|:-----:|:---------------:|
54
- | 0.7575 | 0.9998 | 2354 | 0.7068 |
55
- | 0.6429 | 1.9998 | 4708 | 0.6073 |
56
- | 0.5468 | 2.9998 | 7062 | 0.5428 |
57
- | 0.4439 | 3.9998 | 9416 | 0.4935 |
58
- | 0.3208 | 4.9998 | 11770 | 0.4600 |
59
- | 0.2394 | 5.9998 | 14124 | 0.4490 |
60
-
61
-
62
- ### Framework versions
63
 
64
- - PEFT 0.14.1.dev0
65
- - Transformers 4.49.0.dev0
66
- - Pytorch 2.5.1+cu124
67
- - Datasets 3.2.0
68
- - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: peft
3
+ license: mit
4
  base_model: openai/whisper-large-v2
5
  tags:
6
  - generated_from_trainer
7
+ - ASR
8
+ - Wolof
9
+ - French
10
+ - English
11
+ - Multi-lang
12
+ - Open-Source
13
+ - code-switched
14
  model-index:
15
  - name: whosper-large-v3
16
  results: []
17
+ language:
18
+ - wo
19
+ - fr
20
+ - en
21
+ metrics:
22
+ - cer
23
+ - wer
24
+ pipeline_tag: automatic-speech-recognition
25
  ---
26
+ # Whosper-large-v3
27
 
28
+ ---
29
+ library_name: peft
30
+ license: apache-2.0
31
+ base_model: openai/whisper-large-v2
32
+ tags:
33
+ - generated_from_trainer
34
+ - wolof-asr
35
+ - bilingual
36
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ ## Model Overview
39
+ Whosper-large-v3 is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) optimized for Wolof and French speech recognition, with improved WER and CER metrics compared to its predecessor.
40
+
41
+ ## Performance Metrics
42
+ - **Loss**: 0.4490 (final)
43
+ - **WER (Word Error Rate)**: 0.2409
44
+ - **CER (Character Error Rate)**: 0.1128
45
+ - **Average Inference Time**: 1.8298s
46
+ - **Success Rate**: 100%
47
+
48
+ ## Key Features
49
+ - Improved WER and CER compared to whosper-large
50
+ - Optimized for Wolof and French recognition
51
+ - Enhanced performance on bilingual content
52
+
53
+ ## Limitations
54
+ - Reduced performance on English compared to whosper-large
55
+ - Less effective for general multilingual content
56
+
57
+ ## Training Data
58
+ Combined dataset including:
59
+ - ALFFA Public Dataset
60
+ - FLEURS Dataset
61
+ - Bus Urbain Dataset
62
+ - Anta Women TTS Dataset
63
+
64
+ ## Training Procedure
65
+
66
+ ### Training Hyperparameters
67
+ ```yaml
68
+ learning_rate: 0.001
69
+ train_batch_size: 8
70
+ eval_batch_size: 8
71
+ seed: 42
72
+ gradient_accumulation_steps: 4
73
+ total_train_batch_size: 32
74
+ optimizer: adamw_torch (betas=0.9,0.999, epsilon=1e-08)
75
+ lr_scheduler_type: linear
76
+ lr_scheduler_warmup_steps: 50
77
+ num_epochs: 6
78
+ mixed_precision_training: Native AMP
79
+ ```
80
+
81
+ ### Training Results
82
+ | Training Loss | Epoch | Step | Validation Loss |
83
+ |:-------------:|:-----:|:----:|:---------------:|
84
+ | 0.7575 | 0.9998 | 2354 | 0.7068 |
85
+ | 0.6429 | 1.9998 | 4708 | 0.6073 |
86
+ | 0.5468 | 2.9998 | 7062 | 0.5428 |
87
+ | 0.4439 | 3.9998 | 9416 | 0.4935 |
88
+ | 0.3208 | 4.9998 | 11770 | 0.4600 |
89
+ | 0.2394 | 5.9998 | 14124 | 0.4490 |
90
+
91
+ ## Framework Versions
92
+ - PEFT: 0.14.1.dev0
93
+ - Transformers: 4.49.0.dev0
94
+ - PyTorch: 2.5.1+cu124
95
+ - Datasets: 3.2.0
96
+ - Tokenizers: 0.21.0
97
+
98
+ ## License
99
+ Apache-2.0
100
+
101
+ ## Citation
102
+ ```bibtex
103
+ @misc{whosper2025,
104
+ title={Whosper-large-v3: An Enhanced ASR Model for Wolof and French},
105
+ author={Caytu Robotics AI Department},
106
+ year={2025},
107
+ publisher={Caytu Robotics}
108
+ }
109
+ ```
110
+
111
+ ## Acknowledgments
112
+ This model is developed by the AI Department at Caytu Robotics. It builds upon the OpenAI Whisper Large V2 model.