|
--- |
|
license: mit |
|
language: |
|
- ar |
|
base_model: |
|
- aubmindlab/bert-base-arabertv02 |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
# SWEET MADAR CODA Model |
|
|
|
## Model Description |
|
`CAMeL-Lab/text-editing-coda` is a text editing model tailored for grammatical error correction (GEC) in dialectal Arabic (DA). |
|
The model is based on [AraBERTv02](https://huggingface.co/aubmindlab/bert-base-arabertv02), which we fine-tuned using the [MADAR CODA](https://camel.abudhabi.nyu.edu/madar-coda-corpus/) corpus. |
|
This model was introduced in our ACL 2025 paper, [Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study](https://arxiv.org/abs/2503.00985), where we refer to it as SWEET (Subword Edit Error Tagger). |
|
It achieved SOTA performance on the MADAR CODA dataset. Details about the training procedure, data preprocessing, and hyperparameters are available in the paper. |
|
The fine-tuning code and associated resources are publicly available on our GitHub repository: https://github.com/CAMeL-Lab/text-editing. |
|
|
|
|
|
|
|
## Intended uses |
|
To use the `CAMeL-Lab/text-editing-coda` model, you must clone our text editing [GitHub repository](https://github.com/CAMeL-Lab/text-editing) and follow the installation requirements. |
|
We used this `SWEET` model to report results on the MADAR CODA dev and test sets in our [paper](https://arxiv.org/abs/2503.00985). |
|
|
|
## How to use |
|
Clone our text editing [GitHub repository](https://github.com/CAMeL-Lab/text-editing) and follow the installation requirements |
|
|
|
```python |
|
from transformers import BertTokenizer, BertForTokenClassification |
|
import torch |
|
import torch.nn.functional as F |
|
from gec.tag import rewrite |
|
|
|
tokenizer = BertTokenizer.from_pretrained('CAMeL-Lab/text-editing-coda') |
|
model = BertForTokenClassification.from_pretrained('CAMeL-Lab/text-editing-coda') |
|
|
|
text = 'ุฃูุง ุจุนุทูู ุฑูู
ุชููููู ู ุนููุงูู'.split() |
|
|
|
tokenized_text = tokenizer(text, return_tensors="pt", is_split_into_words=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(**tokenized_text).logits |
|
preds = F.softmax(logits.squeeze(), dim=-1) |
|
preds = torch.argmax(preds, dim=-1).cpu().numpy() |
|
edits = [model.config.id2label[p] for p in preds[1:-1]] |
|
assert len(edits) == len(tokenized_text['input_ids'][0][1:-1]) |
|
|
|
print(edits) # ['R_[ุง]K*', 'K*I_[ุง]K', 'K*', 'K*', 'K*', 'K*', 'K*R_[ู]', 'K*', 'MK*', 'R_[ู]'] |
|
subwords = tokenizer.convert_ids_to_tokens(tokenized_text['input_ids'][0][1:-1]) |
|
output_sent = rewrite(subwords=[subwords], edits=[edits])[0][0] |
|
print(output_sent) # ุงูุง ุจุงุนุทูู ุฑูู
ุชููููู ูุนููุงูู |
|
``` |
|
|
|
|
|
|
|
## Citation |
|
```bibtex |
|
@inter{alhafni-habash-2025-enhancing, |
|
title={Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study}, |
|
author={Bashar Alhafni and Nizar Habash}, |
|
year={2025}, |
|
eprint={2503.00985}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2503.00985}, |
|
} |
|
``` |
|
|
|
|
|
|
|
|