Stuti Agarwal
End of training
a6a1b99 verified
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: temp_model_output_dir
    results: []

temp_model_output_dir

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7204
  • Precision: 0.8552
  • Recall: 0.8448
  • F1: 0.8399
  • Accuracy: 0.8448

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8.8e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.209 1.0 756 0.7528 0.8238 0.8130 0.8013 0.8130
0.7337 2.0 1512 0.7899 0.8209 0.8031 0.7952 0.8031
0.644 3.0 2268 0.7417 0.8394 0.8299 0.8238 0.8299
0.4777 4.0 3024 0.7204 0.8552 0.8448 0.8399 0.8448

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.15.0