BriLLM0.5 / train.py
brillm05
Fresh start without large files
9083130
import argparse
import logging
import os
import random
import math
import copy
import json
import numpy as np
import torch
import torch.nn as nn
import glob
from tqdm.auto import tqdm, trange
from torch.autograd import Variable
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.utils import InitProcessGroupKwargs
from torch.utils.data import IterableDataset, DataLoader, Dataset
import time
import torch.distributed as dist
import gc
from datetime import timedelta
from tokenizers import Tokenizer
import wandb
os.environ["WANDB_WATCH"] = "false"
class BraLM(nn.Module):
def __init__(self, hidden_size, use_ds=False, zero_freq_edges=None, vocab=None):
super().__init__()
self.hidden_size = hidden_size
self.activation = nn.GELU()
self.positions = nn.Parameter(torch.ones(1, 512, 1))
self.device = None
# for fsdp
self._tied_weights_keys = []
self.use_ds = use_ds
self.zero_freq_edges = zero_freq_edges
self.vocab = vocab
def prepare_network(self, vocab):
# Create index mappings for the flattened structure
self.weight_indices = {} # Maps (s_idx, t_idx) to parameter index
self.shared_param_idx = 0
# Current index for new parameters
current_idx = 1
# Populate parameters and mappings
for s_idx, s in enumerate(vocab.edge_dict):
for t_idx, t in enumerate(vocab.edge_dict[s]):
if self.zero_freq_edges is not None and t in self.zero_freq_edges[s]:
# Use shared parameters
self.weight_indices[(s_idx, t_idx)] = self.shared_param_idx
else:
self.weight_indices[(s_idx, t_idx)] = current_idx
current_idx += 1
# Create new parameters
self.weights = nn.Parameter(torch.randn(current_idx, self.hidden_size, self.hidden_size).uniform_(-0.5, 0.5))
self.biases = nn.Parameter(torch.randn(current_idx, 1, self.hidden_size).uniform_(-0.5, 0.5))
self.node_bias = nn.Parameter(torch.randn(len(vocab.edge_dict), 1, self.hidden_size).uniform_(-0.5, 0.5))
def to_device(self, device):
self.weights.to(device)
self.biases.to(device)
self.positions.data = self.positions.data.to(device)
self.device = device
@staticmethod
def _reshape12(x):
return x.reshape(-1, x.size(-2), x.size(-1))
def get_positional_encoding(self, seq_len, d_model):
position = torch.arange(0, seq_len).reshape(-1, 1)
div_term = 10000.0 ** (torch.arange(0, d_model, 2) / d_model)
position_encoding = torch.zeros(seq_len, d_model)
position_encoding[:, 0::2] = torch.sin(position * div_term)
position_encoding[:, 1::2] = torch.cos(position * div_term)
return position_encoding.unsqueeze(0).to(self.device)
# def get_initial_tensor(self, batch_size, max_norm=1.0):
# # initialize energy_tensor
# energy_tensor = torch.zeros(batch_size, 1, self.hidden_size).normal_(0, 1).to(self.device)
# delta_norm = torch.norm(energy_tensor.view(energy_tensor.shape[0], -1), dim=-1, p="fro").detach()
# clip_mask = (delta_norm > max_norm).to(energy_tensor)
# clip_weights = max_norm / delta_norm * clip_mask + (1 - clip_mask)
# energy_tensor = (energy_tensor * clip_weights.view(-1, 1, 1)).detach() #(bs, 1, hs)
# return energy_tensor
def get_initial_tensor(self, batch_size, d, pe):
# initialize energy_tensor
energy_tensor = torch.ones(batch_size, 1, self.hidden_size) / self.hidden_size #(bs, 1, hs)
energy_tensor = energy_tensor.to(self.device)
node_bias = self.node_bias[d[:, 0, 0]]
energy_tensor = self.activation(energy_tensor + node_bias + Variable(pe[:,0], requires_grad=False))
return energy_tensor
def forward(self, neighbor_ids):
# neighbor_ids: (bs, sen_len, 1+k, 2) ; k is the number of negative samples
batch_size = neighbor_ids.size(0)
loss = 0
pe = self.get_positional_encoding(512, self.hidden_size) #(1, 512, hs)
for i in range(neighbor_ids.size(1)):
d = neighbor_ids[:, i] #(bs, 1+k, 2)
if i == 0:
# for the first token, initialize energy_tensor as an all-one tensor
energy_tensor = self.get_initial_tensor(batch_size, d, pe) #(bs, 1, hs)
else:
energy_tensor = (energy_cache * self.positions[:, :i, :].softmax(1)).sum(1, keepdim=True) #(bs, 1, hs) :fix dim bug
# Vectorized parameter lookup
src_idx = d[..., 0] # (bs, 1+k)
tgt_idx = d[..., 1] # (bs, 1+k)
param_indices = torch.tensor([self.weight_indices.get((s.item(), t.item()), self.shared_param_idx)
for s, t in zip(src_idx.reshape(-1), tgt_idx.reshape(-1))],
device=self.device).reshape(batch_size, -1) # (bs, 1+k)
# Batch gather operation
w = self.weights[param_indices] # (bs, 1+k, hidden_size, hidden_size)
b = self.biases[param_indices] # (bs, 1+k, 1, hidden_size)
expand_energy_tensor = self._reshape12(energy_tensor.unsqueeze(1).repeat(1, w.size(1), 1, 1)) #(bs*(1+k), 1, hs)
# for deepspeed fp16: expand_energy_tensor.half()
if self.use_ds:
expand_energy_tensor = expand_energy_tensor.half()
nxt_energy_tensor = self.activation(expand_energy_tensor.bmm(self._reshape12(w))+self._reshape12(b)+Variable(pe[:,i+1], requires_grad=False)) #(bs*(1+k), 1, hs)
output_tensor = nxt_energy_tensor.reshape(batch_size, -1, nxt_energy_tensor.size(-2), nxt_energy_tensor.size(-1)) #(bs, 1+k, 1, hs)
if i == 0:
energy_cache = output_tensor[:,0] #(bs, 1, hs)
else:
energy_cache = torch.cat([energy_cache, output_tensor[:,0]], dim=1) #(bs, i+1, hs)
if 1:
energy = output_tensor.norm(2, (-2, -1))
label = torch.LongTensor([0 for _ in range(batch_size)]).to(self.device)
loss += nn.CrossEntropyLoss()(energy, label)
return loss / neighbor_ids.size(1)
def decode(self, start, vocab, max_new_tokens=16, do_sample=False, temperature=1):
ret = []
pe = self.get_positional_encoding(512, self.hidden_size)
for i, pair in enumerate(start):
if i == 0:
energy_tensor = self.get_initial_tensor(batch_size=1, d=torch.tensor([[pair]], device=self.device), pe=pe).squeeze(0)
else:
energy_tensor = (energy_cache * self.positions[:, :i, :].softmax(1)).sum(1, keepdim=True).squeeze(0)
# Get parameter index for this edge
param_idx = self.weight_indices.get((pair[0], pair[1]), self.shared_param_idx)
# Get weights and biases using parameter index
w = self.weights[param_idx].to(self.device)
b = self.biases[param_idx].to(self.device)
energy_tensor = self.activation(energy_tensor.mm(w) + b + pe.squeeze(0)[i])
if i == 0:
energy_cache = energy_tensor.unsqueeze(0) # Add batch dimension
else:
energy_cache = torch.cat([energy_cache, energy_tensor.unsqueeze(0)], dim=1)
ret += [pair]
x = pair[1]
prev_i = len(start)
for i in range(max_new_tokens):
candidates = vocab(vocab.get_neighbor_of_node(x, -1))
# Get parameter indices for all candidates
param_indices = torch.tensor([self.weight_indices.get((x, t[1]), self.shared_param_idx)
for t in candidates], device=self.device)
# Get weights and biases for all candidates
all_w = self.weights[param_indices].to(self.device)
all_b = self.biases[param_indices].to(self.device)
curr_i = prev_i + i
energy_tensor = (energy_cache * self.positions[:, :curr_i, :].softmax(1)).sum(1, keepdim=True)
expand_energy_tensor = energy_tensor.unsqueeze(1).repeat(1, all_w.size(0), 1, 1)
expand_energy_tensor = self._reshape12(expand_energy_tensor)
nxt_energy_tensor = self.activation(expand_energy_tensor.bmm(self._reshape12(all_w)) + self._reshape12(all_b) + pe[:,curr_i].unsqueeze(0))
output_tensor = nxt_energy_tensor.reshape(1, -1, nxt_energy_tensor.size(-2), nxt_energy_tensor.size(-1))
energy = output_tensor.norm(2, (-2,-1)).squeeze()
probs = torch.softmax(energy, dim=-1)
if temperature > 0:
probs = probs / temperature
if do_sample:
index = torch.multinomial(probs, 1).item()
else:
index = probs.argmax(-1).item()
y = candidates[index][-1]
ret += [(x, y)]
energy_tensor = output_tensor[0, index]
x = y
energy_cache = torch.cat([energy_cache, energy_tensor.unsqueeze(0)], dim=1)
return ret
class Vocab:
def __init__(self, node_dict, nodeindex_dict, edge_dict, edge_decode_dict):
self.node_dict = node_dict #{'node_p': index_p} ---- size: num_nodes
self.nodeindex_dict = nodeindex_dict #{index_p: 'node_p'} ---- size: num_nodes
self.edge_dict = edge_dict #{'node_p': {'node_q': (index_p, index_q), 'node_m': (index_p, index_m)},...} ---- size: num_nodes
self.edge_decode_dict = edge_decode_dict #{(index_p, index_q): 'node_p->node_q'} ---- size: num_nodes*num_nodes
def __call__(self, x):
if isinstance(x, list):
return [self.__call__(_) for _ in x]
else:
return self.fetch(x)
def fetch(self, x):
s, t = x.split("->")
return self.edge_dict[s][t] if s in self.edge_dict and t in self.edge_dict[s] else self.edge_dict[""][""]
@classmethod
def from_node_dict(cls, dictname):
node_dict = dict()
nodeindex_dict = dict()
edge_dict = dict()
edge_decode_dict = dict()
for s in dictname:
node_dict[s] = dictname[s]
nodeindex_dict[dictname[s]] = s # nodeindex_dict: {index_p: 'node_p'}
edge_dict[s] = {} # edge_dict: {'node_p': {'node_q': (index_p, index_q), 'node_m': (index_p, index_m)}}
for t in dictname:
edge_dict[s][t] = (dictname[s], dictname[t])
edge_decode_dict[(dictname[s], dictname[t])] = "->".join([s, t])
return cls(node_dict, nodeindex_dict, edge_dict, edge_decode_dict)
@classmethod
def from_edge(cls, filename):
edge_dict = dict()
edge_dict[""] = {}
edge_dict[""][""] = (0, 0)
edge_decode_dict = dict()
with open(filename) as f:
for line in f:
# line: node_p->node_q
s, t = line.strip().split("->")
if s not in edge_dict:
i = len(edge_dict)
j = 0
edge_dict[s] = dict()
else:
i = edge_dict[s][list(edge_dict[s].keys())[0]][0]
j = len(edge_dict[s])
edge_dict[s][t] = (i, j)
edge_decode_dict[(i, j)] = "->".join([s, t])
return cls(None, edge_dict, edge_decode_dict)
def get_neighbor_of_edge(self, key, k, frequency_dict=None):
s, t = key.split("->") # s, t: node
_s = s if s in self.edge_dict else ""
# if s in self.edge_dict:
# ret = ["->".join([s, _t]) for _t in self.edge_dict[s].keys() if _t != t]
# else:
# ret = ["->".join([s, _t]) for _t in self.edge_dict[""].keys() if _t != t]
# ret = ["->".join([s, _t]) for _t in self.edge_dict[s].keys() if _t != t]
# select by word_frequency
if frequency_dict:
frequency_lst = list(frequency_dict[_s].keys())
# index = frequency_lst.index(t)
# half = k // 2
# if index <= k:
# t_lst = [x for i, x in enumerate(frequency_lst[:k+1]) if i != index]
# else:
# t_lst = frequency_lst[:half] + frequency_lst[index-half:index]
t_lst = [x for i, x in enumerate(frequency_lst[:k+1]) if x != t][:k]
ret = ["->".join([_s, _t]) for _t in t_lst]
random.shuffle(ret)
return ret
# randomly select k negative samples
else:
ret = ["->".join([_s, _t]) for _t in self.edge_dict[_s].keys() if _t != t]
random.shuffle(ret)
return ret[:k] if k != -1 else ret
def get_neighbor_of_node(self, key, k):
#key :index
s = self.nodeindex_dict[key] #node
#_t: node
ret = ["->".join([s, _t]) for _t in self.edge_dict[s].keys() if _t != s]
# randomly select k negative samples
random.shuffle(ret)
return ret[:k] if k != -1 else ret
def get_neighbor_of_edge_broadcast(self, key, edges, k=100):
s, t = key.split("->")
_ret = [_t for _t in self.edge_dict[s].keys() if _t != t] # all neighbors of s except t
random.shuffle(_ret)
ret = []
for edge in edges:
s, t = edge.split("->")
ret += [["->".join([s, _t]) for _t in _ret[:k]]]
return ret
@staticmethod
def to_path(tokens):
path = []
for left, right in zip(tokens[:-1], tokens[1:]):
path.append("->".join([left, right]))
return path
def get_edge_of_node(self, key):
return list(self.edge_dict[key].values())
def decode(self, x):
return self.edge_decode_dict[x]
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO)
logger = logging.getLogger(__name__)
def stdf(string):
def _h(char):
inside_code = ord(char)
if inside_code == 0x3000:
inside_code = 0x0020
else:
inside_code -= 0xfee0
if inside_code < 0x0020 or inside_code > 0x7e:
return char
return chr(inside_code)
return "".join([_h(char) for char in string])
class WikiDataset(Dataset):
"""
Processor for wiki data.
"""
def __init__(self, filename, vocab, max_seq_length, num_neg_samples, seed, buffer_size=100000, shuffle=True, use_frequency=False, use_bpe=False, bpe_tokenizer=None):
super().__init__()
self.vocab = vocab
self.max_seq_length = max_seq_length
self.num_neg_samples = num_neg_samples
self.generator = np.random.default_rng(seed=seed)
self.use_bpe = use_bpe
self.bpe_tokenizer = bpe_tokenizer
self.data = self.read(filename)
if use_frequency:
freq_file = 'word_frequency_en.json' if use_bpe else 'word_frequency.json'
with open(freq_file, 'r') as f:
self.frequency_dict = json.load(f)
else:
self.frequency_dict = None
def read(self, filename):
lines = []
with open(filename, "r", encoding="utf-8") as f:
for line in f:
if self.use_bpe:
lines.append(line.strip())
else:
src = list(line.strip()[:self.max_seq_length])
lines.append(src)
return lines
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
src = self.data[idx]
return self.vectorize(src)
def vectorize(self, src):
if self.use_bpe:
# For English with BPE
bpe_tokens = self.bpe_tokenizer.encode(src).tokens
# Truncate/pad
pad_token = "[PAD]"
if len(bpe_tokens) > self.max_seq_length:
bpe_tokens = bpe_tokens[:self.max_seq_length]
else:
bpe_tokens.extend(pad_token for _ in range(self.max_seq_length - len(bpe_tokens)))
tokens = bpe_tokens
else:
# For Chinese without BPE
if len(src) > self.max_seq_length:
src = src[:self.max_seq_length]
else:
src.extend("" for _ in range(self.max_seq_length-len(src)))
tokens = src
edges = self.vocab.to_path(tokens)
edge_ids = self.vocab(edges)
edge_ids = edge_ids[:self.max_seq_length]
neighbor_ids = [self.vocab(self.vocab.get_neighbor_of_edge(e, self.num_neg_samples, self.frequency_dict)) for e in edges]
new_neighbor_ids = []
for i, e_ids in enumerate(edge_ids):
new_neighbor_ids.append([e_ids] + neighbor_ids[i])
return torch.LongTensor(new_neighbor_ids)
def main():
parser = argparse.ArgumentParser()
# Data config
parser.add_argument("--data_dir", type=str, default="data/wiki",
help="Directory to contain the input data for all tasks.")
parser.add_argument("--output_dir", type=str, default="model/",
help="Directory to output predictions and checkpoints.")
parser.add_argument("--load_state_dict", type=str, default=None,
help="Trained model weights to load for evaluation if needed.")
# Training config
parser.add_argument("--do_train", action="store_true",
help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true",
help="Whether to evaluate on the dev set.")
parser.add_argument("--num_neg_samples", type=int, default=100,
help="Number of negative samples.")
parser.add_argument("--max_seq_length", type=int, default=128,
help="Maximum total input sequence length after word-piece tokenization.")
parser.add_argument("--train_batch_size", type=int, default=128,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size", type=int, default=128,
help="Total batch size for evaluation.")
parser.add_argument("--learning_rate", type=float, default=5e-5,
help="Initial learning rate for Adam.")
parser.add_argument("--num_train_epochs", type=float, default=3.0,
help="Total number of training epochs to perform.")
parser.add_argument("--max_train_steps", type=int, default=None,
help="Total number of training steps to perform. If provided, overrides training epochs.")
parser.add_argument("--weight_decay", type=float, default=0.,
help="L2 weight decay for training.")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
help="Number of updates steps to accumulate before performing a backward pass.")
parser.add_argument("--no_cuda", action="store_true",
help="Whether not to use CUDA when available.")
parser.add_argument("--fp16", action="store_true",
help="Whether to use mixed precision.")
parser.add_argument("--seed", type=int, default=42,
help="Random seed for initialization.")
parser.add_argument("--save_steps", type=int, default=500,
help="How many steps to save the checkpoint once.")
parser.add_argument("--hidden_size", type=int, default=32,
help="Mask rate for masked-fine-tuning.")
parser.add_argument("--local_rank", type=int)
parser.add_argument("--initial_file_number", type=int, default=0,
help="From which file to begin training.")
parser.add_argument("--end_file_number", type=int, default=0,
help="End file number for training.")
parser.add_argument("--wiki_sorted_size", type=int, default=70,
help="Total file numbers for sorted wikidata.")
parser.add_argument("--run_name", type=str, default="plusb_pluspe_order",
help="Run name for wandb.")
parser.add_argument("--use_frequency", action="store_true",
help="Whether to use word frequency.")
parser.add_argument("--train_full", type=str, default=None,
help="Path to train on full text.")
parser.add_argument("--checkpoint_save_step", type=int, default=0,
help="Interval to save checkpoint.(Only support when train_full is True)")
parser.add_argument("--resume_from_checkpoint", type=str, default=None,
help="Path to checkpoint to resume training from")
parser.add_argument("--num_workers", type=int, default=8,
help="Number of workers for data loading.")
parser.add_argument("--vocab_path", type=str, default="vocab_wiki_4k.json",
help="Path to vocab file.")
parser.add_argument("--use_ds", action="store_true",
help="Whether to use deepspeed.")
parser.add_argument("--sparse", action="store_true",
help="Whether to use sparse.")
parser.add_argument("--use_bpe", action="store_true",
help="Whether to use BPE tokenizer for English.")
parser.add_argument("--bpe_tokenizer_path", type=str, default="wiki_bpe_tokenizer_4000_bytelevel.json",
help="Path to BPE tokenizer file.")
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("device: {}, n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, "-accelerate", args.fp16))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
# if not os.path.exists(args.output_dir):
# os.makedirs(args.output_dir)
with open(args.vocab_path) as f:
node_dict = json.load(f)
vocab = Vocab.from_node_dict(node_dict)
if args.sparse:
with open('word_frequency.json', 'r') as f:
freq_dict = json.load(f)
zero_freq_edges = {}
for s in freq_dict:
zero_freq_edges[s] = []
for t in freq_dict[s]:
if freq_dict[s][t] == 0:
zero_freq_edges[s].append(t)
else:
zero_freq_edges = None
def stat_cuda(epoch, cur_file_num, step, location):
if accelerator.is_local_main_process:
with open("cuda_stat.txt", "a") as f:
if epoch is not None:
f.write('epoch: %d, cur_file_num: %d, step: %d\n' % (epoch, cur_file_num, step))
f.write(f'--{location}\n')
f.write('allocated: %dG, max allocated: %dG, cached: %dG, max cached: %dG\n' % (
torch.cuda.memory_allocated() / 1024 / 1024 / 1024,
torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024,
torch.cuda.memory_reserved() / 1024 / 1024 / 1024,
torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024
))
if args.do_train:
# training arguments
os.environ["NCCL_DEBUG"] = "WARN"
os.environ["TORCH_NCCL_BLOCKING_WAIT"] = "1"
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
init_kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=1080000))
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs, init_kwargs], cpu=args.no_cuda, mixed_precision="fp16" if args.fp16 else "no")
device = accelerator.device
# prepare model
model = BraLM(args.hidden_size, args.use_ds, zero_freq_edges, vocab=vocab)
model.prepare_network(vocab)
# model.shared_weight.requires_grad = False
# model.shared_bias.requires_grad = False
# load model from checkpoint
if args.load_state_dict:
print(f"Loading model from checkpoint: {args.load_state_dict}")
checkpoint = torch.load(args.load_state_dict, map_location="cpu")
#model.load_state_dict(checkpoint["model_state_dict"])
model.load_old(checkpoint["model_state_dict"])
# Load checkpoint if specified
wandb_id = None
global_step = 0
if args.resume_from_checkpoint:
print(f"Resuming from checkpoint: {args.resume_from_checkpoint}")
checkpoint = torch.load(args.resume_from_checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model_state_dict"])
#optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
start_epoch = checkpoint["epoch"] # + 1
global_step = checkpoint.get("global_step", 0) # Get saved global step
wandb_id = checkpoint.get("wandb_id")
else:
start_epoch = 0
# if accelerator.is_local_main_process:
# for name, param in model.named_parameters():
# print(name)
model.to_device(device)
if accelerator.is_local_main_process:
print(f"start_epoch: {start_epoch}, global_step: {global_step}")
# prepare optimizer
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0
}
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
if args.resume_from_checkpoint:
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
if accelerator.is_local_main_process:
print(f"before prepare")
#input('-' * 10)
#stat_cuda(None, None, None, "before prepare")
#print(f"{accelerator.device}, model: {model.weights.device}, tensor: {model.tensor.device}, pe: {model.positions.device}")
if not args.use_ds:
model, optimizer = accelerator.prepare(model, optimizer) # for deepspeed: # this line
#stat_cuda(None, None, None, "after prepare")
#print(f"{accelerator.device}, model: {model.module.weights.device}, tensor: {model.module.tensor.device}, pe: {model.module.positions.device}")
if accelerator.is_local_main_process:
print(f"after prepare")
if args.do_train:
if accelerator.is_local_main_process:
# init wandb
wandb.init(
project="brain",
name=args.run_name,
id=wandb_id, # 如果有之前的run_id,使用它;否则会创建新的
resume="allow", # "allow"表示如果有id就恢复,没有就创建新的
config=vars(args)
)
wandb.define_metric("custom_step")
wandb.define_metric("batch_*", step_metric="custom_step")
wandb.define_metric("epoch")
wandb.define_metric("epoch_*", step_metric="epoch")
print(f"Started wandb run with id: {wandb.run.id}")
print(f"View run at: {wandb.run.get_url()}")
if args.train_full:
cur_file_num = args.train_full
cur_filename = f"{cur_file_num}.txt"
if args.use_bpe:
with open(args.bpe_tokenizer_path, 'r') as f:
bpe_tokenizer = json.load(f)
else:
bpe_tokenizer = None
dataset = WikiDataset(
os.path.join(args.data_dir, cur_filename),
vocab,
args.max_seq_length,
args.num_neg_samples,
seed=args.seed,
shuffle=True,
use_frequency=args.use_frequency,
use_bpe=args.use_bpe,
bpe_tokenizer=bpe_tokenizer
)
train_dataloader = DataLoader(dataset, batch_size=args.train_batch_size, num_workers=args.num_workers, pin_memory=True)
train_dataloader = accelerator.prepare(train_dataloader)
elif args.resume_from_checkpoint:
cur_file_num = checkpoint["cur_file_num"]
if isinstance(cur_file_num, int) or cur_file_num.isdigit():
cur_file_num = int(cur_file_num) + 1
#start_epoch = start_epoch - 1
else:
cur_file_num = args.initial_file_number
if args.resume_from_checkpoint and global_step > 0:
if args.train_full and global_step % len(train_dataloader) == 0:
start_epoch = start_epoch + 1
if not args.train_full and cur_file_num > args.end_file_number:
start_epoch = start_epoch + 1
cur_file_num = args.initial_file_number
for epoch in trange(start_epoch, int(args.num_train_epochs), desc="Epoch"):
# traverse all wiki files
if epoch != start_epoch or args.train_full:
cur_file_num = args.initial_file_number
while cur_file_num <= args.wiki_sorted_size:
if args.train_full:
cur_file_num = args.train_full
logger.info("***** Running training for wiki = %s *****", cur_file_num)
logger.info(" Batch size = %d", args.train_batch_size * accelerator.num_processes)
# prepare data
if not args.train_full:
cur_filename = f"{cur_file_num}.txt"
if args.use_bpe:
with open(args.bpe_tokenizer_path, 'r') as f:
bpe_tokenizer = json.load(f)
else:
bpe_tokenizer = None
dataset = WikiDataset(
os.path.join(args.data_dir, cur_filename),
vocab,
args.max_seq_length,
args.num_neg_samples,
seed=args.seed,
shuffle=True,
use_frequency=args.use_frequency,
use_bpe=args.use_bpe,
bpe_tokenizer=bpe_tokenizer
)
train_dataloader = DataLoader(dataset, batch_size=args.train_batch_size, num_workers=args.num_workers, pin_memory=True)
if not args.use_ds:
train_dataloader = accelerator.prepare(train_dataloader)
else:
model, optimizer, train_dataloader = accelerator.prepare(model, optimizer, train_dataloader) # for deepspeed
# training
train_loss = 0
num_train_examples = 0
if accelerator.is_local_main_process:
progress_bar = tqdm(train_dataloader, desc="Iteration")
# start_time = time.time()
#for _ in range(3):
for step, batch in enumerate(train_dataloader, start=global_step % len(train_dataloader)):
# batch: (bs, sen_len, 1+k, 2)
batch_train_loss = 0
batch_num_train_examples = 0
#for ind in range(2, batch.size(1)):
for ind in range(batch.size(1) - 1, batch.size(1)): # fix: only use the sen_len-1
# ind: 2, 3, ..., sen_len-1
# if accelerator.is_local_main_process:
# end_time = time.time()
# step_time = end_time - start_time
# logger.info(f"Step training time: {step_time:.2f} seconds")
model.train()
neighbor_ids = batch[:, :ind] #(bs, ind, 1+k, 2)
#stat_cuda(epoch, cur_file_num, global_step, "before forward")
outputs = model(neighbor_ids)
loss = outputs
# if n_gpu > 1:
# loss = loss.mean()
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if n_gpu > 1:
dist.all_reduce(loss)
loss = loss / dist.get_world_size()
train_loss += loss.detach().item()
batch_train_loss += loss.detach().item()
num_train_examples += 1
batch_num_train_examples += 1
del outputs
del loss
del neighbor_ids
gc.collect()
# if step % 5 == 0:
# torch.cuda.empty_cache()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
## modified
ppl = math.exp(batch_train_loss / batch_num_train_examples)
if accelerator.is_local_main_process:
progress_bar.update(1)
progress_bar.set_postfix(loss=batch_train_loss / batch_num_train_examples, perplexity=ppl)
wandb.log({
"batch_loss": batch_train_loss / batch_num_train_examples,
"batch_perplexity": math.exp(batch_train_loss / batch_num_train_examples),
"batch_epoch": epoch,
#"step": global_step,
"custom_step": global_step
})#, step=global_step)
global_step += 1
# Save checkpoint every checkpoint_save_step steps at the end of each step
if accelerator.is_local_main_process and args.checkpoint_save_step > 0 and global_step % args.checkpoint_save_step == 0:
output_dir_f = f"{args.output_dir}/HS{args.hidden_size}/step_{global_step}/"
if not os.path.exists(output_dir_f):
os.makedirs(output_dir_f)
output_model_file = os.path.join(output_dir_f, f"checkpoint_{global_step}.bin")
model_to_save = model.module if hasattr(model, "module") else model
checkpoint = {
"model_state_dict": model_to_save.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"epoch": epoch,
"global_step": global_step,
"args": vars(args),
"wandb_id": wandb.run.id
}
if not args.train_full:
checkpoint["cur_file_num"] = cur_file_num
print(f"Saving checkpoint to {output_model_file}")
torch.save(checkpoint, output_model_file)
print(f"Checkpoint saved to {output_model_file}")
# save model for current training file
if accelerator.is_local_main_process:
epoch_avg_loss = train_loss / num_train_examples
epoch_ppl = math.exp(epoch_avg_loss)
wandb.log({
"epoch_loss": epoch_avg_loss,
"epoch_perplexity": epoch_ppl,
"epoch": epoch,
})#, step=global_step)
model_to_save = model.module if hasattr(model, "module") else model
output_dir_f = f"{args.output_dir}/HS{args.hidden_size}/EPOCH{epoch}/"
if not os.path.exists(output_dir_f):
os.makedirs(output_dir_f)
output_model_file = os.path.join(output_dir_f, "f{}_pytorch_model.bin".format(cur_file_num))
# only save the last model
if args.train_full or cur_file_num == args.end_file_number:
#torch.save(model_to_save.state_dict(), output_model_file)
checkpoint = {
"model_state_dict": model_to_save.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"epoch": epoch,
"global_step": global_step, # Save global step
"args": vars(args),
"wandb_id": wandb.run.id # 保存当前运行的wandb_id
}
if not args.train_full:
checkpoint["cur_file_num"] = cur_file_num
print(f"Saving model to {output_model_file}")
torch.save(checkpoint, output_model_file)
print(f"Model saved to {output_model_file}")
if args.train_full:
break
cur_file_num += 1
if cur_file_num > args.end_file_number:
break
if __name__ == "__main__":
main()