File size: 38,564 Bytes
9083130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
import argparse
import logging
import os
import random
import math
import copy
import json
import numpy as np
import torch
import torch.nn as nn
import glob
from tqdm.auto import tqdm, trange
from torch.autograd import Variable
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.utils import InitProcessGroupKwargs
from torch.utils.data import IterableDataset, DataLoader, Dataset
import time
import torch.distributed as dist
import gc
from datetime import timedelta
from tokenizers import Tokenizer

import wandb

os.environ["WANDB_WATCH"] = "false"


class BraLM(nn.Module):
    def __init__(self, hidden_size, use_ds=False, zero_freq_edges=None, vocab=None):
        super().__init__()
        self.hidden_size = hidden_size
        self.activation = nn.GELU()
        self.positions = nn.Parameter(torch.ones(1, 512, 1))
        self.device = None
        
        # for fsdp
        self._tied_weights_keys = []

        self.use_ds = use_ds
        self.zero_freq_edges = zero_freq_edges
        self.vocab = vocab

    def prepare_network(self, vocab):
        # Create index mappings for the flattened structure
        self.weight_indices = {}  # Maps (s_idx, t_idx) to parameter index
        self.shared_param_idx = 0
        
        # Current index for new parameters
        current_idx = 1
        
        # Populate parameters and mappings
        for s_idx, s in enumerate(vocab.edge_dict):
            for t_idx, t in enumerate(vocab.edge_dict[s]):
                if self.zero_freq_edges is not None and t in self.zero_freq_edges[s]:
                    # Use shared parameters
                    self.weight_indices[(s_idx, t_idx)] = self.shared_param_idx
                else:
                    self.weight_indices[(s_idx, t_idx)] = current_idx
                    current_idx += 1

        # Create new parameters
        self.weights = nn.Parameter(torch.randn(current_idx, self.hidden_size, self.hidden_size).uniform_(-0.5, 0.5))
        self.biases = nn.Parameter(torch.randn(current_idx, 1, self.hidden_size).uniform_(-0.5, 0.5))

        self.node_bias = nn.Parameter(torch.randn(len(vocab.edge_dict), 1, self.hidden_size).uniform_(-0.5, 0.5))

    def to_device(self, device):
        self.weights.to(device)
        self.biases.to(device)
        self.positions.data = self.positions.data.to(device)
        self.device = device

    @staticmethod
    def _reshape12(x):
        return x.reshape(-1, x.size(-2), x.size(-1))
    
    def get_positional_encoding(self, seq_len, d_model):
        position = torch.arange(0, seq_len).reshape(-1, 1)
        div_term = 10000.0 ** (torch.arange(0, d_model, 2) / d_model)
        position_encoding = torch.zeros(seq_len, d_model)
        position_encoding[:, 0::2] = torch.sin(position * div_term)
        position_encoding[:, 1::2] = torch.cos(position * div_term)
        return position_encoding.unsqueeze(0).to(self.device)

    # def get_initial_tensor(self, batch_size, max_norm=1.0):
    #     # initialize energy_tensor
    #     energy_tensor = torch.zeros(batch_size, 1, self.hidden_size).normal_(0, 1).to(self.device)
    #     delta_norm = torch.norm(energy_tensor.view(energy_tensor.shape[0], -1), dim=-1, p="fro").detach()
    #     clip_mask = (delta_norm > max_norm).to(energy_tensor)
    #     clip_weights = max_norm / delta_norm * clip_mask + (1 - clip_mask)
    #     energy_tensor = (energy_tensor * clip_weights.view(-1, 1, 1)).detach()    #(bs, 1, hs)
    #     return energy_tensor
    
    def get_initial_tensor(self, batch_size, d, pe):
        # initialize energy_tensor
        energy_tensor = torch.ones(batch_size, 1, self.hidden_size) / self.hidden_size   #(bs, 1, hs)
        energy_tensor = energy_tensor.to(self.device)

        node_bias = self.node_bias[d[:, 0, 0]]
        energy_tensor = self.activation(energy_tensor + node_bias + Variable(pe[:,0], requires_grad=False))
        return energy_tensor


    def forward(self, neighbor_ids):
        # neighbor_ids: (bs, sen_len, 1+k, 2) ; k is the number of negative samples
        batch_size = neighbor_ids.size(0)
        loss = 0

        pe = self.get_positional_encoding(512, self.hidden_size)  #(1, 512, hs)

        for i in range(neighbor_ids.size(1)):
            d = neighbor_ids[:, i]  #(bs, 1+k, 2)
            
            if i == 0:
                # for the first token, initialize energy_tensor as an all-one tensor
                energy_tensor = self.get_initial_tensor(batch_size, d, pe)  #(bs, 1, hs) 
            else:
                energy_tensor = (energy_cache * self.positions[:, :i, :].softmax(1)).sum(1, keepdim=True)   #(bs, 1, hs) :fix dim bug

            # Vectorized parameter lookup
            src_idx = d[..., 0]  # (bs, 1+k)
            tgt_idx = d[..., 1]  # (bs, 1+k)
            param_indices = torch.tensor([self.weight_indices.get((s.item(), t.item()), self.shared_param_idx) 
                                        for s, t in zip(src_idx.reshape(-1), tgt_idx.reshape(-1))], 
                                       device=self.device).reshape(batch_size, -1)  # (bs, 1+k)
            
            # Batch gather operation
            w = self.weights[param_indices]  # (bs, 1+k, hidden_size, hidden_size)
            b = self.biases[param_indices]   # (bs, 1+k, 1, hidden_size)

            expand_energy_tensor = self._reshape12(energy_tensor.unsqueeze(1).repeat(1, w.size(1), 1, 1))  #(bs*(1+k), 1, hs)
            # for deepspeed fp16: expand_energy_tensor.half()
            if self.use_ds:
                expand_energy_tensor = expand_energy_tensor.half()
            nxt_energy_tensor = self.activation(expand_energy_tensor.bmm(self._reshape12(w))+self._reshape12(b)+Variable(pe[:,i+1], requires_grad=False))  #(bs*(1+k), 1, hs)
            output_tensor = nxt_energy_tensor.reshape(batch_size, -1, nxt_energy_tensor.size(-2), nxt_energy_tensor.size(-1))  #(bs, 1+k, 1, hs)

            if i == 0:
                energy_cache = output_tensor[:,0]   #(bs, 1, hs)
            else:
                energy_cache = torch.cat([energy_cache, output_tensor[:,0]], dim=1)  #(bs, i+1, hs)

            if 1:
                energy = output_tensor.norm(2, (-2, -1))
                label = torch.LongTensor([0 for _ in range(batch_size)]).to(self.device)
                loss += nn.CrossEntropyLoss()(energy, label)

        return loss / neighbor_ids.size(1)

    def decode(self, start, vocab, max_new_tokens=16, do_sample=False, temperature=1):
        ret = []
        pe = self.get_positional_encoding(512, self.hidden_size)
        
        for i, pair in enumerate(start):
            if i == 0:
                energy_tensor = self.get_initial_tensor(batch_size=1, d=torch.tensor([[pair]], device=self.device), pe=pe).squeeze(0)
            else:
                energy_tensor = (energy_cache * self.positions[:, :i, :].softmax(1)).sum(1, keepdim=True).squeeze(0)
            
            # Get parameter index for this edge
            param_idx = self.weight_indices.get((pair[0], pair[1]), self.shared_param_idx)
            
            # Get weights and biases using parameter index
            w = self.weights[param_idx].to(self.device)
            b = self.biases[param_idx].to(self.device)

            energy_tensor = self.activation(energy_tensor.mm(w) + b + pe.squeeze(0)[i])
            if i == 0:
                energy_cache = energy_tensor.unsqueeze(0)  # Add batch dimension
            else:
                energy_cache = torch.cat([energy_cache, energy_tensor.unsqueeze(0)], dim=1)
            ret += [pair]
        
        x = pair[1]
        prev_i = len(start)

        for i in range(max_new_tokens):
            candidates = vocab(vocab.get_neighbor_of_node(x, -1))
            
            # Get parameter indices for all candidates
            param_indices = torch.tensor([self.weight_indices.get((x, t[1]), self.shared_param_idx) 
                                        for t in candidates], device=self.device)
            
            # Get weights and biases for all candidates
            all_w = self.weights[param_indices].to(self.device)
            all_b = self.biases[param_indices].to(self.device)

            curr_i = prev_i + i
            energy_tensor = (energy_cache * self.positions[:, :curr_i, :].softmax(1)).sum(1, keepdim=True)
            expand_energy_tensor = energy_tensor.unsqueeze(1).repeat(1, all_w.size(0), 1, 1)
            expand_energy_tensor = self._reshape12(expand_energy_tensor)

            nxt_energy_tensor = self.activation(expand_energy_tensor.bmm(self._reshape12(all_w)) + self._reshape12(all_b) + pe[:,curr_i].unsqueeze(0))
            output_tensor = nxt_energy_tensor.reshape(1, -1, nxt_energy_tensor.size(-2), nxt_energy_tensor.size(-1))

            energy = output_tensor.norm(2, (-2,-1)).squeeze()

            probs = torch.softmax(energy, dim=-1)
            if temperature > 0:
                probs = probs / temperature
            if do_sample:
                index = torch.multinomial(probs, 1).item()
            else:
                index = probs.argmax(-1).item()

            y = candidates[index][-1]
            ret += [(x, y)]

            energy_tensor = output_tensor[0, index]
            x = y

            energy_cache = torch.cat([energy_cache, energy_tensor.unsqueeze(0)], dim=1)

        return ret


class Vocab:
    def __init__(self, node_dict, nodeindex_dict, edge_dict, edge_decode_dict):
        self.node_dict = node_dict              #{'node_p': index_p}    ----    size: num_nodes
        self.nodeindex_dict = nodeindex_dict    #{index_p: 'node_p'}    ----    size: num_nodes
        self.edge_dict = edge_dict              #{'node_p': {'node_q': (index_p, index_q), 'node_m': (index_p, index_m)},...}    ----    size: num_nodes
        self.edge_decode_dict = edge_decode_dict    #{(index_p, index_q): 'node_p->node_q'}    ----    size: num_nodes*num_nodes

    def __call__(self, x):
        if isinstance(x, list):
            return [self.__call__(_) for _ in x]
        else:
            return self.fetch(x)

    def fetch(self, x):
        s, t = x.split("->")
        return self.edge_dict[s][t] if s in self.edge_dict and t in self.edge_dict[s] else self.edge_dict[""][""]

    @classmethod
    def from_node_dict(cls, dictname):
        node_dict = dict()
        nodeindex_dict = dict()
        edge_dict = dict()
        edge_decode_dict = dict()
        for s in dictname:
            node_dict[s] = dictname[s]
            nodeindex_dict[dictname[s]] = s # nodeindex_dict: {index_p: 'node_p'}
            edge_dict[s] = {} # edge_dict: {'node_p': {'node_q': (index_p, index_q), 'node_m': (index_p, index_m)}}
            for t in dictname:
                edge_dict[s][t] = (dictname[s], dictname[t])
                edge_decode_dict[(dictname[s], dictname[t])] = "->".join([s, t])
        return cls(node_dict, nodeindex_dict, edge_dict, edge_decode_dict)

    @classmethod
    def from_edge(cls, filename):
        edge_dict = dict()
        edge_dict[""] = {}
        edge_dict[""][""] = (0, 0)
        edge_decode_dict = dict()
        with open(filename) as f:
            for line in f:
                # line: node_p->node_q
                s, t = line.strip().split("->")
                if s not in edge_dict:
                    i = len(edge_dict)
                    j = 0
                    edge_dict[s] = dict()
                else:
                    i = edge_dict[s][list(edge_dict[s].keys())[0]][0]
                    j = len(edge_dict[s])
                edge_dict[s][t] = (i, j)
                edge_decode_dict[(i, j)] = "->".join([s, t])
        return cls(None, edge_dict, edge_decode_dict)

    def get_neighbor_of_edge(self, key, k, frequency_dict=None):
        s, t = key.split("->") # s, t: node
        _s = s if s in self.edge_dict else ""
        
        # if s in self.edge_dict:
        #     ret = ["->".join([s, _t]) for _t in self.edge_dict[s].keys() if _t != t]
        # else:
        #     ret = ["->".join([s, _t]) for _t in self.edge_dict[""].keys() if _t != t]
        # ret = ["->".join([s, _t]) for _t in self.edge_dict[s].keys() if _t != t]
        
        # select by word_frequency
        if frequency_dict:
            frequency_lst = list(frequency_dict[_s].keys())
            # index = frequency_lst.index(t)
            # half = k // 2
            # if index <= k:
            #     t_lst = [x for i, x in enumerate(frequency_lst[:k+1]) if i != index]
            # else:
            #     t_lst = frequency_lst[:half] + frequency_lst[index-half:index]
            t_lst = [x for i, x in enumerate(frequency_lst[:k+1]) if x != t][:k]
            ret = ["->".join([_s, _t]) for _t in t_lst]
            random.shuffle(ret)
            return ret
        # randomly select k negative samples
        else:
            ret = ["->".join([_s, _t]) for _t in self.edge_dict[_s].keys() if _t != t]
            random.shuffle(ret)
            return ret[:k] if k != -1 else ret

    def get_neighbor_of_node(self, key, k):
        #key :index
        s = self.nodeindex_dict[key] #node
        #_t: node
        ret = ["->".join([s, _t]) for _t in self.edge_dict[s].keys() if _t != s]
        
        # randomly select k negative samples
        random.shuffle(ret) 
        return ret[:k] if k != -1 else ret
    
    def get_neighbor_of_edge_broadcast(self, key, edges, k=100):
        s, t = key.split("->")
        _ret = [_t for _t in self.edge_dict[s].keys() if _t != t] # all neighbors of s except t
        random.shuffle(_ret)
        ret = []
        for edge in edges:
            s, t = edge.split("->")
            ret += [["->".join([s, _t]) for _t in _ret[:k]]] 
        return ret

    @staticmethod
    def to_path(tokens):
        path = []
        for left, right in zip(tokens[:-1], tokens[1:]):
            path.append("->".join([left, right]))
        return path

    def get_edge_of_node(self, key):
        return list(self.edge_dict[key].values())

    def decode(self, x):
        return self.edge_decode_dict[x]


logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
                    datefmt="%m/%d/%Y %H:%M:%S",
                    level=logging.INFO)
logger = logging.getLogger(__name__)


def stdf(string):
    def _h(char):
        inside_code = ord(char)
        if inside_code == 0x3000:
            inside_code = 0x0020
        else:
            inside_code -= 0xfee0
        if inside_code < 0x0020 or inside_code > 0x7e:
            return char
        return chr(inside_code)

    return "".join([_h(char) for char in string])


class WikiDataset(Dataset):
    """
    Processor for wiki data.
    """
    def __init__(self, filename, vocab, max_seq_length, num_neg_samples, seed, buffer_size=100000, shuffle=True, use_frequency=False, use_bpe=False, bpe_tokenizer=None):
        super().__init__()
        self.vocab = vocab
        self.max_seq_length = max_seq_length
        self.num_neg_samples = num_neg_samples
        self.generator = np.random.default_rng(seed=seed)
        self.use_bpe = use_bpe
        self.bpe_tokenizer = bpe_tokenizer
        
        self.data = self.read(filename)
        
        if use_frequency:
            freq_file = 'word_frequency_en.json' if use_bpe else 'word_frequency.json'
            with open(freq_file, 'r') as f:
                self.frequency_dict = json.load(f)
        else:
            self.frequency_dict = None

    def read(self, filename):
        lines = []
        with open(filename, "r", encoding="utf-8") as f:
            for line in f:
                if self.use_bpe:
                    lines.append(line.strip())
                else:
                    src = list(line.strip()[:self.max_seq_length])
                    lines.append(src)
        return lines

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        src = self.data[idx]
        return self.vectorize(src)

    def vectorize(self, src):
        if self.use_bpe:
            # For English with BPE
            bpe_tokens = self.bpe_tokenizer.encode(src).tokens
            # Truncate/pad
            pad_token = "[PAD]"
            if len(bpe_tokens) > self.max_seq_length:
                bpe_tokens = bpe_tokens[:self.max_seq_length]
            else:
                bpe_tokens.extend(pad_token for _ in range(self.max_seq_length - len(bpe_tokens)))
            tokens = bpe_tokens
        else:
            # For Chinese without BPE
            if len(src) > self.max_seq_length:
                src = src[:self.max_seq_length]
            else:
                src.extend("" for _ in range(self.max_seq_length-len(src)))
            tokens = src
            
        edges = self.vocab.to_path(tokens)
        edge_ids = self.vocab(edges)
        edge_ids = edge_ids[:self.max_seq_length]
        neighbor_ids = [self.vocab(self.vocab.get_neighbor_of_edge(e, self.num_neg_samples, self.frequency_dict)) for e in edges]

        new_neighbor_ids = []
        for i, e_ids in enumerate(edge_ids):
            new_neighbor_ids.append([e_ids] + neighbor_ids[i])
        return torch.LongTensor(new_neighbor_ids)


def main():
    parser = argparse.ArgumentParser()

    # Data config
    parser.add_argument("--data_dir", type=str, default="data/wiki",
                        help="Directory to contain the input data for all tasks.")
    parser.add_argument("--output_dir", type=str, default="model/",
                        help="Directory to output predictions and checkpoints.")
    parser.add_argument("--load_state_dict", type=str, default=None,
                        help="Trained model weights to load for evaluation if needed.")

    # Training config
    parser.add_argument("--do_train", action="store_true",
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true",
                        help="Whether to evaluate on the dev set.")
    parser.add_argument("--num_neg_samples", type=int, default=100,
                        help="Number of negative samples.")
    parser.add_argument("--max_seq_length", type=int, default=128,
                        help="Maximum total input sequence length after word-piece tokenization.")
    parser.add_argument("--train_batch_size", type=int, default=128,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size", type=int, default=128,
                        help="Total batch size for evaluation.")
    parser.add_argument("--learning_rate", type=float, default=5e-5,
                        help="Initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", type=float, default=3.0,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_train_steps", type=int, default=None,
                        help="Total number of training steps to perform. If provided, overrides training epochs.")
    parser.add_argument("--weight_decay", type=float, default=0.,
                        help="L2 weight decay for training.")
    parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward pass.")
    parser.add_argument("--no_cuda", action="store_true",
                        help="Whether not to use CUDA when available.")
    parser.add_argument("--fp16", action="store_true",
                        help="Whether to use mixed precision.")
    parser.add_argument("--seed", type=int, default=42,
                        help="Random seed for initialization.")
    parser.add_argument("--save_steps", type=int, default=500,
                        help="How many steps to save the checkpoint once.")
    parser.add_argument("--hidden_size", type=int, default=32,
                        help="Mask rate for masked-fine-tuning.")
    parser.add_argument("--local_rank", type=int)
    parser.add_argument("--initial_file_number", type=int, default=0,
                        help="From which file to begin training.")
    parser.add_argument("--end_file_number", type=int, default=0,
                        help="End file number for training.")
    parser.add_argument("--wiki_sorted_size", type=int, default=70,
                        help="Total file numbers for sorted wikidata.")
    parser.add_argument("--run_name", type=str, default="plusb_pluspe_order",
                        help="Run name for wandb.")

    parser.add_argument("--use_frequency", action="store_true",
                        help="Whether to use word frequency.")
    parser.add_argument("--train_full", type=str, default=None,
                        help="Path to train on full text.")
    parser.add_argument("--checkpoint_save_step", type=int, default=0,
                        help="Interval to save checkpoint.(Only support when train_full is True)")
    parser.add_argument("--resume_from_checkpoint", type=str, default=None,
                        help="Path to checkpoint to resume training from")
    parser.add_argument("--num_workers", type=int, default=8,
                        help="Number of workers for data loading.")
    parser.add_argument("--vocab_path", type=str, default="vocab_wiki_4k.json",
                        help="Path to vocab file.")
    parser.add_argument("--use_ds", action="store_true",
                        help="Whether to use deepspeed.")
    parser.add_argument("--sparse", action="store_true",
                        help="Whether to use sparse.")
    parser.add_argument("--use_bpe", action="store_true",
                        help="Whether to use BPE tokenizer for English.")
    parser.add_argument("--bpe_tokenizer_path", type=str, default="wiki_bpe_tokenizer_4000_bytelevel.json",
                        help="Path to BPE tokenizer file.")

    args = parser.parse_args()
    
    
    device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, "-accelerate", args.fp16))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    # if not os.path.exists(args.output_dir):
    #     os.makedirs(args.output_dir)

    with open(args.vocab_path) as f:
        node_dict = json.load(f)
    vocab = Vocab.from_node_dict(node_dict)

    if args.sparse:
        with open('word_frequency.json', 'r') as f:
            freq_dict = json.load(f)

        zero_freq_edges = {}
        for s in freq_dict:
            zero_freq_edges[s] = []
            for t in freq_dict[s]:
                if freq_dict[s][t] == 0:
                    zero_freq_edges[s].append(t)
    else:
        zero_freq_edges = None
    

    def stat_cuda(epoch, cur_file_num, step, location):
        if accelerator.is_local_main_process:
            with open("cuda_stat.txt", "a") as f:
                if epoch is not None:
                    f.write('epoch: %d, cur_file_num: %d, step: %d\n' % (epoch, cur_file_num, step))
                f.write(f'--{location}\n')
                f.write('allocated: %dG, max allocated: %dG, cached: %dG, max cached: %dG\n' % (
                    torch.cuda.memory_allocated() / 1024 / 1024 / 1024,
                    torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024,
                    torch.cuda.memory_reserved() / 1024 / 1024 / 1024,
                    torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024
            ))

    if args.do_train:
        # training arguments
        os.environ["NCCL_DEBUG"] = "WARN"
        os.environ["TORCH_NCCL_BLOCKING_WAIT"] = "1"
        ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
        init_kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=1080000))
        accelerator = Accelerator(kwargs_handlers=[ddp_kwargs, init_kwargs], cpu=args.no_cuda, mixed_precision="fp16" if args.fp16 else "no")
        device = accelerator.device

        # prepare model
        model = BraLM(args.hidden_size, args.use_ds, zero_freq_edges, vocab=vocab)
        model.prepare_network(vocab)
        # model.shared_weight.requires_grad = False
        # model.shared_bias.requires_grad = False

        # load model from checkpoint
        if args.load_state_dict:
            print(f"Loading model from checkpoint: {args.load_state_dict}")
            checkpoint = torch.load(args.load_state_dict, map_location="cpu")
            #model.load_state_dict(checkpoint["model_state_dict"])
            model.load_old(checkpoint["model_state_dict"])


        # Load checkpoint if specified
        wandb_id = None
        global_step = 0
        if args.resume_from_checkpoint:
            print(f"Resuming from checkpoint: {args.resume_from_checkpoint}")
            checkpoint = torch.load(args.resume_from_checkpoint, map_location="cpu")
            model.load_state_dict(checkpoint["model_state_dict"])
            #optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
            start_epoch = checkpoint["epoch"] # + 1
            global_step = checkpoint.get("global_step", 0)  # Get saved global step
            wandb_id = checkpoint.get("wandb_id")
        else:
            start_epoch = 0

        # if accelerator.is_local_main_process:   
        #     for name, param in model.named_parameters():
        #         print(name)

        model.to_device(device)

        
        if accelerator.is_local_main_process:   
            print(f"start_epoch: {start_epoch}, global_step: {global_step}")
        
        # prepare optimizer
        no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
        optimizer_grouped_parameters = [
            {
                "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
                "weight_decay": args.weight_decay
            },
            {
                "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
                "weight_decay": 0.0
            }
        ]
        optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

        if args.resume_from_checkpoint:
            optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        
        if accelerator.is_local_main_process:
            print(f"before prepare")
        #input('-' * 10)
        #stat_cuda(None, None, None, "before prepare")
        #print(f"{accelerator.device}, model: {model.weights.device}, tensor: {model.tensor.device}, pe: {model.positions.device}")
        if not args.use_ds:
            model, optimizer = accelerator.prepare(model, optimizer) # for deepspeed: # this line
        #stat_cuda(None, None, None, "after prepare")
        #print(f"{accelerator.device}, model: {model.module.weights.device}, tensor: {model.module.tensor.device}, pe: {model.module.positions.device}")
        if accelerator.is_local_main_process:
            print(f"after prepare")

    if args.do_train:

        if accelerator.is_local_main_process:
            # init wandb
            wandb.init(
                project="brain",
                name=args.run_name,
                id=wandb_id,  # 如果有之前的run_id,使用它;否则会创建新的
                resume="allow",  # "allow"表示如果有id就恢复,没有就创建新的
                config=vars(args)
            )
            wandb.define_metric("custom_step")
            wandb.define_metric("batch_*", step_metric="custom_step")
            wandb.define_metric("epoch")
            wandb.define_metric("epoch_*", step_metric="epoch")
            print(f"Started wandb run with id: {wandb.run.id}")
            print(f"View run at: {wandb.run.get_url()}")
        
        if args.train_full:
            cur_file_num = args.train_full
            cur_filename = f"{cur_file_num}.txt"
            if args.use_bpe:
                with open(args.bpe_tokenizer_path, 'r') as f:
                    bpe_tokenizer = json.load(f)
            else:
                bpe_tokenizer = None
            dataset = WikiDataset(
                os.path.join(args.data_dir, cur_filename), 
                vocab, 
                args.max_seq_length, 
                args.num_neg_samples, 
                seed=args.seed, 
                shuffle=True, 
                use_frequency=args.use_frequency,
                use_bpe=args.use_bpe,
                bpe_tokenizer=bpe_tokenizer
            )
            train_dataloader = DataLoader(dataset, batch_size=args.train_batch_size, num_workers=args.num_workers, pin_memory=True)
            train_dataloader = accelerator.prepare(train_dataloader)
        elif args.resume_from_checkpoint:
            cur_file_num = checkpoint["cur_file_num"]
            if isinstance(cur_file_num, int) or cur_file_num.isdigit():
                cur_file_num = int(cur_file_num) + 1
                #start_epoch = start_epoch - 1
        else:
            cur_file_num = args.initial_file_number

        if args.resume_from_checkpoint and global_step > 0:
            if args.train_full and global_step % len(train_dataloader) == 0:
                start_epoch = start_epoch + 1
            if not args.train_full and cur_file_num > args.end_file_number:
                start_epoch = start_epoch + 1
                cur_file_num = args.initial_file_number
        

        for epoch in trange(start_epoch, int(args.num_train_epochs), desc="Epoch"):
            # traverse all wiki files
            if epoch != start_epoch or args.train_full:
                cur_file_num = args.initial_file_number
            while cur_file_num <= args.wiki_sorted_size:
                if args.train_full:
                    cur_file_num = args.train_full
                logger.info("***** Running training for wiki = %s *****", cur_file_num)
                logger.info("  Batch size = %d", args.train_batch_size * accelerator.num_processes)
                
                # prepare data
                if not args.train_full:
                    cur_filename = f"{cur_file_num}.txt"
                    if args.use_bpe:
                        with open(args.bpe_tokenizer_path, 'r') as f:
                            bpe_tokenizer = json.load(f)
                    else:
                        bpe_tokenizer = None
                    dataset = WikiDataset(
                        os.path.join(args.data_dir, cur_filename), 
                        vocab, 
                        args.max_seq_length, 
                        args.num_neg_samples, 
                        seed=args.seed, 
                        shuffle=True, 
                        use_frequency=args.use_frequency,
                        use_bpe=args.use_bpe,
                        bpe_tokenizer=bpe_tokenizer
                    )
                    train_dataloader = DataLoader(dataset, batch_size=args.train_batch_size, num_workers=args.num_workers, pin_memory=True)
                    if not args.use_ds:
                        train_dataloader = accelerator.prepare(train_dataloader)
                    else:
                        model, optimizer, train_dataloader = accelerator.prepare(model, optimizer, train_dataloader) # for deepspeed


                # training
                train_loss = 0
                num_train_examples = 0
                if accelerator.is_local_main_process:
                    progress_bar = tqdm(train_dataloader, desc="Iteration")
                    # start_time = time.time()
                
                #for _ in range(3):
                for step, batch in enumerate(train_dataloader, start=global_step % len(train_dataloader)):
                    # batch: (bs, sen_len, 1+k, 2)
                    batch_train_loss = 0
                    batch_num_train_examples = 0
                    #for ind in range(2, batch.size(1)):
                    for ind in range(batch.size(1) - 1, batch.size(1)): # fix: only use the sen_len-1
                        # ind: 2, 3, ..., sen_len-1
                        # if accelerator.is_local_main_process:
                        #     end_time = time.time()
                        #     step_time = end_time - start_time
                        #     logger.info(f"Step training time: {step_time:.2f} seconds")

                        model.train()
                        neighbor_ids = batch[:, :ind]   #(bs, ind, 1+k, 2)

                        #stat_cuda(epoch, cur_file_num, global_step, "before forward")   
                        outputs = model(neighbor_ids)
                        loss = outputs

                        # if n_gpu > 1:
                        #     loss = loss.mean()

                        if args.gradient_accumulation_steps > 1:
                            loss = loss / args.gradient_accumulation_steps
                        accelerator.backward(loss)

                        if n_gpu > 1:
                            dist.all_reduce(loss)
                            loss = loss / dist.get_world_size()

                        train_loss += loss.detach().item()
                        batch_train_loss += loss.detach().item()

                        num_train_examples += 1
                        batch_num_train_examples += 1
                        
                        del outputs
                        del loss
                        del neighbor_ids
                        gc.collect()
                        # if step % 5 == 0:
                        #    torch.cuda.empty_cache()

                        if (step + 1) % args.gradient_accumulation_steps == 0:
                            optimizer.step()
                            optimizer.zero_grad()

                            ## modified

                            ppl = math.exp(batch_train_loss / batch_num_train_examples)
                        
                            if accelerator.is_local_main_process:
                                progress_bar.update(1)
                                progress_bar.set_postfix(loss=batch_train_loss / batch_num_train_examples, perplexity=ppl)
                                
                                wandb.log({
                                    "batch_loss": batch_train_loss / batch_num_train_examples, 
                                    "batch_perplexity": math.exp(batch_train_loss / batch_num_train_examples),
                                    "batch_epoch": epoch,
                                    #"step": global_step,
                                    "custom_step": global_step
                                })#, step=global_step)

                        global_step += 1

                        # Save checkpoint every checkpoint_save_step steps at the end of each step
                        if accelerator.is_local_main_process and args.checkpoint_save_step > 0 and global_step % args.checkpoint_save_step == 0:
                            output_dir_f = f"{args.output_dir}/HS{args.hidden_size}/step_{global_step}/"
                            if not os.path.exists(output_dir_f):
                                os.makedirs(output_dir_f)
                            output_model_file = os.path.join(output_dir_f, f"checkpoint_{global_step}.bin")
                            
                            model_to_save = model.module if hasattr(model, "module") else model
                            checkpoint = {
                                "model_state_dict": model_to_save.state_dict(),
                                "optimizer_state_dict": optimizer.state_dict(), 
                                "epoch": epoch,
                                "global_step": global_step,
                                "args": vars(args),
                                "wandb_id": wandb.run.id
                            }
                            if not args.train_full:
                                checkpoint["cur_file_num"] = cur_file_num
                            print(f"Saving checkpoint to {output_model_file}")
                            torch.save(checkpoint, output_model_file)
                            print(f"Checkpoint saved to {output_model_file}")


                # save model for current training file
                if accelerator.is_local_main_process:
                    epoch_avg_loss = train_loss / num_train_examples
                    epoch_ppl = math.exp(epoch_avg_loss)
                    wandb.log({
                        "epoch_loss": epoch_avg_loss,
                        "epoch_perplexity": epoch_ppl,
                        "epoch": epoch,
                    })#, step=global_step)
                    
                    model_to_save = model.module if hasattr(model, "module") else model
                    output_dir_f = f"{args.output_dir}/HS{args.hidden_size}/EPOCH{epoch}/"
                    if not os.path.exists(output_dir_f):
                        os.makedirs(output_dir_f)
                    output_model_file = os.path.join(output_dir_f, "f{}_pytorch_model.bin".format(cur_file_num))
                    # only save the last model
                    if args.train_full or cur_file_num == args.end_file_number:
                        #torch.save(model_to_save.state_dict(), output_model_file)
                        checkpoint = {
                            "model_state_dict": model_to_save.state_dict(),
                            "optimizer_state_dict": optimizer.state_dict(),
                            "epoch": epoch,
                            "global_step": global_step,  # Save global step
                            "args": vars(args),
                            "wandb_id": wandb.run.id  # 保存当前运行的wandb_id
                        }
                        if not args.train_full:
                            checkpoint["cur_file_num"] = cur_file_num
                        print(f"Saving model to {output_model_file}")
                        torch.save(checkpoint, output_model_file)
                        print(f"Model saved to {output_model_file}")

                if args.train_full:
                    break
                cur_file_num += 1
                if cur_file_num > args.end_file_number:
                    break



if __name__ == "__main__":
    main()