File size: 2,936 Bytes
6e668a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- accuracy
- bleu
model-index:
- name: rotating-head-lr-norm-gpt2-medium-wikitext
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rotating-head-lr-norm-gpt2-medium-wikitext

This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2154
- Accuracy: 0.4186
- Perplexity: 24.9126
- Bleu: 0.1314

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Perplexity | Bleu   |
|:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|
| 5.9061        | 0.2806 | 500  | 5.7498          | 0.2230   | 314.1125   | 0.0496 |
| 4.8622        | 0.5612 | 1000 | 4.7414          | 0.2810   | 114.5910   | 0.0705 |
| 4.3006        | 0.8418 | 1500 | 4.2267          | 0.3182   | 68.4878    | 0.0834 |
| 3.9714        | 1.1223 | 2000 | 3.9429          | 0.3439   | 51.5654    | 0.0924 |
| 3.7835        | 1.4029 | 2500 | 3.7523          | 0.3629   | 42.6192    | 0.0969 |
| 3.6732        | 1.6835 | 3000 | 3.6293          | 0.3750   | 37.6861    | 0.1067 |
| 3.5764        | 1.9641 | 3500 | 3.5353          | 0.3848   | 34.3055    | 0.1124 |
| 3.4733        | 2.2447 | 4000 | 3.4822          | 0.3899   | 32.5321    | 0.1183 |
| 3.4163        | 2.5253 | 4500 | 3.4356          | 0.3946   | 31.0488    | 0.1253 |
| 3.3818        | 2.8058 | 5000 | 3.3806          | 0.4006   | 29.3886    | 0.1215 |
| 3.2827        | 3.0864 | 5500 | 3.3539          | 0.4028   | 28.6152    | 0.1308 |
| 3.2712        | 3.3670 | 6000 | 3.3233          | 0.4067   | 27.7517    | 0.1289 |
| 3.247         | 3.6476 | 6500 | 3.2908          | 0.4098   | 26.8652    | 0.1304 |
| 3.2203        | 3.9282 | 7000 | 3.2657          | 0.4126   | 26.1980    | 0.1278 |
| 3.1558        | 4.2088 | 7500 | 3.2440          | 0.4152   | 25.6357    | 0.1319 |
| 3.1152        | 4.4893 | 8000 | 3.2283          | 0.4169   | 25.2358    | 0.1301 |
| 3.1228        | 4.7699 | 8500 | 3.2154          | 0.4186   | 24.9126    | 0.1314 |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0