Model save
Browse files- README.md +79 -0
- generation_config.json +7 -0
- modeling_rotating_head_gpt2.py +1132 -0
README.md
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
metrics:
|
| 6 |
+
- accuracy
|
| 7 |
+
- bleu
|
| 8 |
+
model-index:
|
| 9 |
+
- name: rotating-head-lr-norm-gpt2-medium-wikitext
|
| 10 |
+
results: []
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 14 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 15 |
+
|
| 16 |
+
# rotating-head-lr-norm-gpt2-medium-wikitext
|
| 17 |
+
|
| 18 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
| 19 |
+
It achieves the following results on the evaluation set:
|
| 20 |
+
- Loss: 3.2154
|
| 21 |
+
- Accuracy: 0.4186
|
| 22 |
+
- Perplexity: 24.9126
|
| 23 |
+
- Bleu: 0.1314
|
| 24 |
+
|
| 25 |
+
## Model description
|
| 26 |
+
|
| 27 |
+
More information needed
|
| 28 |
+
|
| 29 |
+
## Intended uses & limitations
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Training and evaluation data
|
| 34 |
+
|
| 35 |
+
More information needed
|
| 36 |
+
|
| 37 |
+
## Training procedure
|
| 38 |
+
|
| 39 |
+
### Training hyperparameters
|
| 40 |
+
|
| 41 |
+
The following hyperparameters were used during training:
|
| 42 |
+
- learning_rate: 0.0001
|
| 43 |
+
- train_batch_size: 64
|
| 44 |
+
- eval_batch_size: 64
|
| 45 |
+
- seed: 42
|
| 46 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 47 |
+
- lr_scheduler_type: linear
|
| 48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
| 49 |
+
- num_epochs: 5
|
| 50 |
+
|
| 51 |
+
### Training results
|
| 52 |
+
|
| 53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | Bleu |
|
| 54 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|
|
| 55 |
+
| 5.9061 | 0.2806 | 500 | 5.7498 | 0.2230 | 314.1125 | 0.0496 |
|
| 56 |
+
| 4.8622 | 0.5612 | 1000 | 4.7414 | 0.2810 | 114.5910 | 0.0705 |
|
| 57 |
+
| 4.3006 | 0.8418 | 1500 | 4.2267 | 0.3182 | 68.4878 | 0.0834 |
|
| 58 |
+
| 3.9714 | 1.1223 | 2000 | 3.9429 | 0.3439 | 51.5654 | 0.0924 |
|
| 59 |
+
| 3.7835 | 1.4029 | 2500 | 3.7523 | 0.3629 | 42.6192 | 0.0969 |
|
| 60 |
+
| 3.6732 | 1.6835 | 3000 | 3.6293 | 0.3750 | 37.6861 | 0.1067 |
|
| 61 |
+
| 3.5764 | 1.9641 | 3500 | 3.5353 | 0.3848 | 34.3055 | 0.1124 |
|
| 62 |
+
| 3.4733 | 2.2447 | 4000 | 3.4822 | 0.3899 | 32.5321 | 0.1183 |
|
| 63 |
+
| 3.4163 | 2.5253 | 4500 | 3.4356 | 0.3946 | 31.0488 | 0.1253 |
|
| 64 |
+
| 3.3818 | 2.8058 | 5000 | 3.3806 | 0.4006 | 29.3886 | 0.1215 |
|
| 65 |
+
| 3.2827 | 3.0864 | 5500 | 3.3539 | 0.4028 | 28.6152 | 0.1308 |
|
| 66 |
+
| 3.2712 | 3.3670 | 6000 | 3.3233 | 0.4067 | 27.7517 | 0.1289 |
|
| 67 |
+
| 3.247 | 3.6476 | 6500 | 3.2908 | 0.4098 | 26.8652 | 0.1304 |
|
| 68 |
+
| 3.2203 | 3.9282 | 7000 | 3.2657 | 0.4126 | 26.1980 | 0.1278 |
|
| 69 |
+
| 3.1558 | 4.2088 | 7500 | 3.2440 | 0.4152 | 25.6357 | 0.1319 |
|
| 70 |
+
| 3.1152 | 4.4893 | 8000 | 3.2283 | 0.4169 | 25.2358 | 0.1301 |
|
| 71 |
+
| 3.1228 | 4.7699 | 8500 | 3.2154 | 0.4186 | 24.9126 | 0.1314 |
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
### Framework versions
|
| 75 |
+
|
| 76 |
+
- Transformers 4.49.0
|
| 77 |
+
- Pytorch 2.6.0+cu124
|
| 78 |
+
- Datasets 3.3.2
|
| 79 |
+
- Tokenizers 0.21.0
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 50256,
|
| 4 |
+
"eos_token_id": 50256,
|
| 5 |
+
"transformers_version": "4.49.0",
|
| 6 |
+
"use_cache": false
|
| 7 |
+
}
|
modeling_rotating_head_gpt2.py
ADDED
|
@@ -0,0 +1,1132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
"""PyTorch OpenAI GPT-2 model, code copied from Huggingface"""
|
| 3 |
+
|
| 4 |
+
import math
|
| 5 |
+
import os
|
| 6 |
+
import warnings
|
| 7 |
+
from dataclasses import dataclass
|
| 8 |
+
from typing import Callable, Optional, Tuple, Union
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from torch import nn
|
| 13 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 14 |
+
|
| 15 |
+
from transformers.activations import ACT2FN
|
| 16 |
+
from transformers.generation import GenerationMixin
|
| 17 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
|
| 18 |
+
from transformers.modeling_outputs import (
|
| 19 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 20 |
+
CausalLMOutputWithCrossAttentions,
|
| 21 |
+
QuestionAnsweringModelOutput,
|
| 22 |
+
SequenceClassifierOutputWithPast,
|
| 23 |
+
TokenClassifierOutput,
|
| 24 |
+
)
|
| 25 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel, SequenceSummary
|
| 26 |
+
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
|
| 27 |
+
from transformers.utils import (
|
| 28 |
+
ModelOutput,
|
| 29 |
+
add_code_sample_docstrings,
|
| 30 |
+
add_start_docstrings,
|
| 31 |
+
add_start_docstrings_to_model_forward,
|
| 32 |
+
logging,
|
| 33 |
+
replace_return_docstrings,
|
| 34 |
+
)
|
| 35 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
| 36 |
+
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
| 37 |
+
from src.models.modeling_gpt2 import GPT2PreTrainedModel, GPT2Block
|
| 38 |
+
|
| 39 |
+
logger = logging.get_logger(__name__)
|
| 40 |
+
|
| 41 |
+
class RotatingHeadGPT2Config(GPT2Config):
|
| 42 |
+
model_type = "rotating-head-gpt2"
|
| 43 |
+
architectures = ["RotatingHeadGPT2LMHeadModel"]
|
| 44 |
+
|
| 45 |
+
class RotatingHeadGPT2PretrainedModel(GPT2PreTrainedModel):
|
| 46 |
+
config_class = RotatingHeadGPT2Config
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
| 50 |
+
"""Load tf checkpoints in a pytorch model"""
|
| 51 |
+
try:
|
| 52 |
+
import re
|
| 53 |
+
|
| 54 |
+
import tensorflow as tf
|
| 55 |
+
except ImportError:
|
| 56 |
+
logger.error(
|
| 57 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
| 58 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
| 59 |
+
)
|
| 60 |
+
raise
|
| 61 |
+
tf_path = os.path.abspath(gpt2_checkpoint_path)
|
| 62 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
| 63 |
+
# Load weights from TF model
|
| 64 |
+
init_vars = tf.train.list_variables(tf_path)
|
| 65 |
+
names = []
|
| 66 |
+
arrays = []
|
| 67 |
+
for name, shape in init_vars:
|
| 68 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
| 69 |
+
array = tf.train.load_variable(tf_path, name)
|
| 70 |
+
names.append(name)
|
| 71 |
+
arrays.append(array.squeeze())
|
| 72 |
+
|
| 73 |
+
for name, array in zip(names, arrays):
|
| 74 |
+
name = name[6:] # skip "model/"
|
| 75 |
+
name = name.split("/")
|
| 76 |
+
pointer = model
|
| 77 |
+
for m_name in name:
|
| 78 |
+
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
| 79 |
+
scope_names = re.split(r"(\d+)", m_name)
|
| 80 |
+
else:
|
| 81 |
+
scope_names = [m_name]
|
| 82 |
+
if scope_names[0] == "w" or scope_names[0] == "g":
|
| 83 |
+
pointer = getattr(pointer, "weight")
|
| 84 |
+
elif scope_names[0] == "b":
|
| 85 |
+
pointer = getattr(pointer, "bias")
|
| 86 |
+
elif scope_names[0] == "wpe" or scope_names[0] == "wte":
|
| 87 |
+
pointer = getattr(pointer, scope_names[0])
|
| 88 |
+
pointer = getattr(pointer, "weight")
|
| 89 |
+
else:
|
| 90 |
+
pointer = getattr(pointer, scope_names[0])
|
| 91 |
+
if len(scope_names) >= 2:
|
| 92 |
+
num = int(scope_names[1])
|
| 93 |
+
pointer = pointer[num]
|
| 94 |
+
try:
|
| 95 |
+
if pointer.shape != array.shape:
|
| 96 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
| 97 |
+
except ValueError as e:
|
| 98 |
+
e.args += (pointer.shape, array.shape)
|
| 99 |
+
raise
|
| 100 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
| 101 |
+
pointer.data = torch.from_numpy(array)
|
| 102 |
+
return model
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def eager_attention_forward(module, query, key, value, attention_mask, head_mask=None, **kwargs):
|
| 106 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
| 107 |
+
|
| 108 |
+
if module.scale_attn_weights:
|
| 109 |
+
attn_weights = attn_weights / torch.full(
|
| 110 |
+
[], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Layer-wise attention scaling
|
| 114 |
+
if module.scale_attn_by_inverse_layer_idx:
|
| 115 |
+
attn_weights = attn_weights / float(module.layer_idx + 1)
|
| 116 |
+
|
| 117 |
+
if not module.is_cross_attention:
|
| 118 |
+
# if only "normal" attention layer implements causal mask
|
| 119 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
| 120 |
+
causal_mask = module.bias[:, :, key_length - query_length : key_length, :key_length]
|
| 121 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
| 122 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
| 123 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
| 124 |
+
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
|
| 125 |
+
attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
|
| 126 |
+
|
| 127 |
+
if attention_mask is not None:
|
| 128 |
+
# Apply the attention mask
|
| 129 |
+
attn_weights = attn_weights + attention_mask
|
| 130 |
+
|
| 131 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 132 |
+
|
| 133 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
| 134 |
+
attn_weights = attn_weights.type(value.dtype)
|
| 135 |
+
attn_weights = module.attn_dropout(attn_weights)
|
| 136 |
+
|
| 137 |
+
# Mask heads if we want to
|
| 138 |
+
if head_mask is not None:
|
| 139 |
+
attn_weights = attn_weights * head_mask
|
| 140 |
+
|
| 141 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 142 |
+
attn_output = attn_output.transpose(1, 2)
|
| 143 |
+
|
| 144 |
+
return attn_output, attn_weights
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class HeadSpecificLRRoPE(nn.Module):
|
| 148 |
+
def __init__(self, num_heads, head_dim):
|
| 149 |
+
super().__init__()
|
| 150 |
+
self.num_heads = num_heads
|
| 151 |
+
self.head_dim = head_dim
|
| 152 |
+
|
| 153 |
+
# Initialize head-specific frequencies (learnable)
|
| 154 |
+
self.frequencies = nn.Parameter(torch.randn(num_heads, head_dim // 2))
|
| 155 |
+
self.layer_norm = nn.LayerNorm(head_dim // 2)
|
| 156 |
+
|
| 157 |
+
def forward(self, Q, K):
|
| 158 |
+
bs, heads, seq, embed = Q.size()
|
| 159 |
+
# Q = torch.einsum('bse,hed->bhse', X, W_Q) # [batch, heads, seq, embed]
|
| 160 |
+
# K = torch.einsum('bse,hed->bhse', X, W_K)
|
| 161 |
+
|
| 162 |
+
positions = torch.arange(seq, device=Q.device).unsqueeze(1) # [seq_length, 1]
|
| 163 |
+
|
| 164 |
+
cos_theta = torch.cos(positions * self.layer_norm(self.frequencies.unsqueeze(1)))
|
| 165 |
+
sin_theta = torch.sin(positions * self.layer_norm(self.frequencies.unsqueeze(1)))
|
| 166 |
+
|
| 167 |
+
Q_even, Q_odd = Q[..., ::2], Q[..., 1::2]
|
| 168 |
+
K_even, K_odd = K[..., ::2], K[..., 1::2]
|
| 169 |
+
|
| 170 |
+
Q_rotated = torch.stack([Q_even * cos_theta - Q_odd * sin_theta,
|
| 171 |
+
Q_even * sin_theta + Q_odd * cos_theta], dim=-1).reshape_as(Q)
|
| 172 |
+
K_rotated = torch.stack([K_even * cos_theta - K_odd * sin_theta,
|
| 173 |
+
K_even * sin_theta + K_odd * cos_theta], dim=-1).reshape_as(K)
|
| 174 |
+
|
| 175 |
+
return Q_rotated, K_rotated
|
| 176 |
+
|
| 177 |
+
class HeadSpecificGPRoPE(nn.Module):
|
| 178 |
+
def __init__(self, num_heads, head_dim, base_frequency=10000):
|
| 179 |
+
super().__init__()
|
| 180 |
+
self.num_heads = num_heads
|
| 181 |
+
self.head_dim = head_dim
|
| 182 |
+
|
| 183 |
+
# Geometric frequency progression (fixed)
|
| 184 |
+
frequency_base = base_frequency ** (-torch.arange(0, head_dim, 2).float() / head_dim)
|
| 185 |
+
scales = torch.logspace(0, -1, steps=num_heads, base=10.0).unsqueeze(1) # [num_heads, 1]
|
| 186 |
+
self.frequencies = (scales @ frequency_base.unsqueeze(0)) # [num_heads, dim//2]
|
| 187 |
+
self.layer_norm = nn.LayerNorm(head_dim)
|
| 188 |
+
|
| 189 |
+
def forward(self, Q, K):
|
| 190 |
+
bs, heads, seq, embed = Q.size()
|
| 191 |
+
# Q = torch.einsum('bse,hed->bhse', X, W_Q) # [batch, heads, seq, embed]
|
| 192 |
+
# K = torch.einsum('bse,hed->bhse', X, W_K)
|
| 193 |
+
|
| 194 |
+
positions = torch.arange(seq, device=Q.device).unsqueeze(1).unsqueeze(0) # [1, seq_length, 1]
|
| 195 |
+
|
| 196 |
+
cos_theta = torch.cos(positions * self.layer_norm(self.frequencies.unsqueeze(1)))
|
| 197 |
+
sin_theta = torch.sin(positions * self.layer_norm(self.frequencies.unsqueeze(1)))
|
| 198 |
+
|
| 199 |
+
Q_even, Q_odd = Q[..., ::2], Q[..., 1::2]
|
| 200 |
+
K_even, K_odd = K[..., ::2], K[..., 1::2]
|
| 201 |
+
|
| 202 |
+
Q_rotated = torch.stack([Q_even * cos_theta - Q_odd * sin_theta,
|
| 203 |
+
Q_even * sin_theta + Q_odd * cos_theta], dim=-1).reshape_as(Q)
|
| 204 |
+
K_rotated = torch.stack([K_even * cos_theta - K_odd * sin_theta,
|
| 205 |
+
K_even * sin_theta + K_odd * cos_theta], dim=-1).reshape_as(K)
|
| 206 |
+
|
| 207 |
+
return Q_rotated, K_rotated
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class GPT2Attention(nn.Module):
|
| 212 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
| 213 |
+
super().__init__()
|
| 214 |
+
self.config = config
|
| 215 |
+
max_positions = config.max_position_embeddings
|
| 216 |
+
self.register_buffer(
|
| 217 |
+
"bias",
|
| 218 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
| 219 |
+
1, 1, max_positions, max_positions
|
| 220 |
+
),
|
| 221 |
+
persistent=False,
|
| 222 |
+
)
|
| 223 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
| 224 |
+
|
| 225 |
+
self.embed_dim = config.hidden_size
|
| 226 |
+
self.num_heads = config.num_attention_heads
|
| 227 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 228 |
+
self.split_size = self.embed_dim
|
| 229 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 230 |
+
raise ValueError(
|
| 231 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 232 |
+
f" {self.num_heads})."
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
self.scale_attn_weights = config.scale_attn_weights
|
| 236 |
+
self.is_cross_attention = is_cross_attention
|
| 237 |
+
|
| 238 |
+
# Layer-wise attention scaling, reordering, and upcasting
|
| 239 |
+
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
| 240 |
+
self.layer_idx = layer_idx
|
| 241 |
+
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
| 242 |
+
|
| 243 |
+
if self.is_cross_attention:
|
| 244 |
+
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
|
| 245 |
+
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
| 246 |
+
else:
|
| 247 |
+
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
| 248 |
+
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
| 249 |
+
|
| 250 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
| 251 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
| 252 |
+
self.is_causal = True
|
| 253 |
+
|
| 254 |
+
self.pruned_heads = set()
|
| 255 |
+
|
| 256 |
+
def prune_heads(self, heads):
|
| 257 |
+
if len(heads) == 0:
|
| 258 |
+
return
|
| 259 |
+
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
|
| 260 |
+
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
| 261 |
+
|
| 262 |
+
# Prune conv1d layers
|
| 263 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
| 264 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
| 265 |
+
|
| 266 |
+
# Update hyper params
|
| 267 |
+
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
|
| 268 |
+
self.num_heads = self.num_heads - len(heads)
|
| 269 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 270 |
+
|
| 271 |
+
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
|
| 272 |
+
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
|
| 273 |
+
bsz, num_heads, q_seq_len, dk = query.size()
|
| 274 |
+
_, _, k_seq_len, _ = key.size()
|
| 275 |
+
|
| 276 |
+
# Preallocate attn_weights for `baddbmm`
|
| 277 |
+
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
|
| 278 |
+
|
| 279 |
+
# Compute Scale Factor
|
| 280 |
+
scale_factor = 1.0
|
| 281 |
+
if self.scale_attn_weights:
|
| 282 |
+
scale_factor /= float(value.size(-1)) ** 0.5
|
| 283 |
+
|
| 284 |
+
if self.scale_attn_by_inverse_layer_idx:
|
| 285 |
+
scale_factor /= float(self.layer_idx + 1)
|
| 286 |
+
|
| 287 |
+
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
|
| 288 |
+
with torch.amp.autocast(query.device.type, enabled=False):
|
| 289 |
+
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
|
| 290 |
+
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
|
| 291 |
+
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
| 292 |
+
|
| 293 |
+
if not self.is_cross_attention:
|
| 294 |
+
# if only "normal" attention layer implements causal mask
|
| 295 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
| 296 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
| 297 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
| 298 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
| 299 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
| 300 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
| 301 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
| 302 |
+
|
| 303 |
+
if attention_mask is not None:
|
| 304 |
+
# Apply the attention mask
|
| 305 |
+
attn_weights = attn_weights + attention_mask
|
| 306 |
+
|
| 307 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 308 |
+
|
| 309 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
|
| 310 |
+
if attn_weights.dtype != torch.float32:
|
| 311 |
+
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
|
| 312 |
+
attn_weights = attn_weights.type(value.dtype)
|
| 313 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 314 |
+
|
| 315 |
+
# Mask heads if we want to
|
| 316 |
+
if head_mask is not None:
|
| 317 |
+
attn_weights = attn_weights * head_mask
|
| 318 |
+
|
| 319 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 320 |
+
attn_output = attn_output.transpose(1, 2)
|
| 321 |
+
|
| 322 |
+
return attn_output, attn_weights
|
| 323 |
+
|
| 324 |
+
def forward(
|
| 325 |
+
self,
|
| 326 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 327 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 328 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 329 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 330 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 331 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 332 |
+
use_cache: Optional[bool] = False,
|
| 333 |
+
output_attentions: Optional[bool] = False,
|
| 334 |
+
**kwargs,
|
| 335 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
| 336 |
+
if encoder_hidden_states is not None:
|
| 337 |
+
if not hasattr(self, "q_attn"):
|
| 338 |
+
raise ValueError(
|
| 339 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
| 340 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
query_states = self.q_attn(hidden_states)
|
| 344 |
+
key_states, value_states = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
| 345 |
+
attention_mask = encoder_attention_mask
|
| 346 |
+
else:
|
| 347 |
+
query_states, key_states, value_states = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
| 348 |
+
|
| 349 |
+
shape_q = (*query_states.shape[:-1], -1, self.head_dim)
|
| 350 |
+
shape_kv = (*key_states.shape[:-1], -1, self.head_dim)
|
| 351 |
+
|
| 352 |
+
query_states = query_states.view(shape_q).transpose(1, 2)
|
| 353 |
+
key_states = key_states.view(shape_kv).transpose(1, 2)
|
| 354 |
+
value_states = value_states.view(shape_kv).transpose(1, 2)
|
| 355 |
+
|
| 356 |
+
if layer_past is not None:
|
| 357 |
+
past_key, past_value = layer_past
|
| 358 |
+
key_states = torch.cat((past_key, key_states), dim=-2)
|
| 359 |
+
value_states = torch.cat((past_value, value_states), dim=-2)
|
| 360 |
+
|
| 361 |
+
if use_cache is True:
|
| 362 |
+
present = (key_states, value_states)
|
| 363 |
+
else:
|
| 364 |
+
present = None
|
| 365 |
+
|
| 366 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 367 |
+
is_causal = attention_mask is None and query_states.shape[-2] > 1 and not is_cross_attention
|
| 368 |
+
|
| 369 |
+
using_eager = self.config._attn_implementation == "eager"
|
| 370 |
+
attention_interface: Callable = eager_attention_forward
|
| 371 |
+
if self.config._attn_implementation != "eager":
|
| 372 |
+
if self.config._attn_implementation == "sdpa" and (output_attentions or head_mask is not None):
|
| 373 |
+
using_eager = True
|
| 374 |
+
logger.warning_once(
|
| 375 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
| 376 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 377 |
+
)
|
| 378 |
+
else:
|
| 379 |
+
# Attention functions are consistent with previous equivalent attention classes, however they do not support some options
|
| 380 |
+
# (e.g. layer scaling, head mask) that eager supports. These implementations are thus equivalent to previous code, but
|
| 381 |
+
# not necessarily to eager (if mentionned options are provided).
|
| 382 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 383 |
+
|
| 384 |
+
if using_eager and self.reorder_and_upcast_attn:
|
| 385 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(
|
| 386 |
+
query_states, key_states, value_states, attention_mask, head_mask
|
| 387 |
+
)
|
| 388 |
+
else:
|
| 389 |
+
attn_output, attn_weights = attention_interface(
|
| 390 |
+
self,
|
| 391 |
+
query_states,
|
| 392 |
+
key_states,
|
| 393 |
+
value_states,
|
| 394 |
+
attention_mask,
|
| 395 |
+
head_mask=head_mask,
|
| 396 |
+
dropout=self.attn_dropout.p if self.training else 0.0,
|
| 397 |
+
is_causal=is_causal,
|
| 398 |
+
**kwargs,
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
attn_output = attn_output.reshape(*attn_output.shape[:-2], -1).contiguous()
|
| 402 |
+
attn_output = self.c_proj(attn_output)
|
| 403 |
+
attn_output = self.resid_dropout(attn_output)
|
| 404 |
+
|
| 405 |
+
outputs = (attn_output, present)
|
| 406 |
+
if output_attentions:
|
| 407 |
+
outputs += (attn_weights,)
|
| 408 |
+
|
| 409 |
+
return outputs # a, present, (attentions)
|
| 410 |
+
|
| 411 |
+
class RotatingheadGPT2Attention(GPT2Attention):
|
| 412 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
| 413 |
+
super().__init__(config, is_cross_attention, layer_idx)
|
| 414 |
+
if config.rotatinghead == 'lr':
|
| 415 |
+
self.rope = HeadSpecificLRRoPE(config.num_attention_heads, self.head_dim)
|
| 416 |
+
elif config.rotatinghead == 'gp':
|
| 417 |
+
self.rope = HeadSpecificGPRoPE(config.num_attention_heads, self.head_dim)
|
| 418 |
+
self.rotatinghead = config.rotatinghead
|
| 419 |
+
|
| 420 |
+
def forward(
|
| 421 |
+
self,
|
| 422 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 423 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 424 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 425 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 426 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 427 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 428 |
+
use_cache: Optional[bool] = False,
|
| 429 |
+
output_attentions: Optional[bool] = False,
|
| 430 |
+
**kwargs,
|
| 431 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
| 432 |
+
if encoder_hidden_states is not None:
|
| 433 |
+
if not hasattr(self, "q_attn"):
|
| 434 |
+
raise ValueError(
|
| 435 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
| 436 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
query_states = self.q_attn(hidden_states)
|
| 440 |
+
key_states, value_states = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
| 441 |
+
attention_mask = encoder_attention_mask
|
| 442 |
+
else:
|
| 443 |
+
query_states, key_states, value_states = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
| 444 |
+
|
| 445 |
+
shape_q = (*query_states.shape[:-1], -1, self.head_dim)
|
| 446 |
+
shape_kv = (*key_states.shape[:-1], -1, self.head_dim)
|
| 447 |
+
|
| 448 |
+
query_states = query_states.view(shape_q).transpose(1, 2)
|
| 449 |
+
key_states = key_states.view(shape_kv).transpose(1, 2)
|
| 450 |
+
value_states = value_states.view(shape_kv).transpose(1, 2)
|
| 451 |
+
|
| 452 |
+
if layer_past is not None:
|
| 453 |
+
past_key, past_value = layer_past
|
| 454 |
+
key_states = torch.cat((past_key, key_states), dim=-2)
|
| 455 |
+
value_states = torch.cat((past_value, value_states), dim=-2)
|
| 456 |
+
|
| 457 |
+
if use_cache is True:
|
| 458 |
+
present = (key_states, value_states)
|
| 459 |
+
else:
|
| 460 |
+
present = None
|
| 461 |
+
|
| 462 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 463 |
+
is_causal = attention_mask is None and query_states.shape[-2] > 1 and not is_cross_attention
|
| 464 |
+
|
| 465 |
+
using_eager = self.config._attn_implementation == "eager"
|
| 466 |
+
attention_interface: Callable = eager_attention_forward
|
| 467 |
+
if self.config._attn_implementation != "eager":
|
| 468 |
+
if self.config._attn_implementation == "sdpa" and (output_attentions or head_mask is not None):
|
| 469 |
+
using_eager = True
|
| 470 |
+
logger.warning_once(
|
| 471 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
| 472 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 473 |
+
)
|
| 474 |
+
else:
|
| 475 |
+
# Attention functions are consistent with previous equivalent attention classes, however they do not support some options
|
| 476 |
+
# (e.g. layer scaling, head mask) that eager supports. These implementations are thus equivalent to previous code, but
|
| 477 |
+
# not necessarily to eager (if mentionned options are provided).
|
| 478 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 479 |
+
|
| 480 |
+
query_states, key_states = self.rope(query_states, key_states)
|
| 481 |
+
|
| 482 |
+
if using_eager and self.reorder_and_upcast_attn:
|
| 483 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(
|
| 484 |
+
query_states, key_states, value_states, attention_mask, head_mask
|
| 485 |
+
)
|
| 486 |
+
else:
|
| 487 |
+
attn_output, attn_weights = attention_interface(
|
| 488 |
+
self,
|
| 489 |
+
query_states,
|
| 490 |
+
key_states,
|
| 491 |
+
value_states,
|
| 492 |
+
attention_mask,
|
| 493 |
+
head_mask=head_mask,
|
| 494 |
+
dropout=self.attn_dropout.p if self.training else 0.0,
|
| 495 |
+
is_causal=is_causal,
|
| 496 |
+
**kwargs,
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
attn_output = attn_output.reshape(*attn_output.shape[:-2], -1).contiguous()
|
| 500 |
+
attn_output = self.c_proj(attn_output)
|
| 501 |
+
attn_output = self.resid_dropout(attn_output)
|
| 502 |
+
|
| 503 |
+
outputs = (attn_output, present)
|
| 504 |
+
if output_attentions:
|
| 505 |
+
outputs += (attn_weights,)
|
| 506 |
+
|
| 507 |
+
return outputs # a, present, (attentions)
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
class GPT2MLP(nn.Module):
|
| 511 |
+
def __init__(self, intermediate_size, config):
|
| 512 |
+
super().__init__()
|
| 513 |
+
embed_dim = config.hidden_size
|
| 514 |
+
self.c_fc = Conv1D(intermediate_size, embed_dim)
|
| 515 |
+
self.c_proj = Conv1D(embed_dim, intermediate_size)
|
| 516 |
+
self.act = ACT2FN[config.activation_function]
|
| 517 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
| 518 |
+
|
| 519 |
+
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
| 520 |
+
hidden_states = self.c_fc(hidden_states)
|
| 521 |
+
hidden_states = self.act(hidden_states)
|
| 522 |
+
hidden_states = self.c_proj(hidden_states)
|
| 523 |
+
hidden_states = self.dropout(hidden_states)
|
| 524 |
+
return hidden_states
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
class GPT2Block(nn.Module):
|
| 528 |
+
def __init__(self, config, layer_idx=None):
|
| 529 |
+
super().__init__()
|
| 530 |
+
hidden_size = config.hidden_size
|
| 531 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
| 532 |
+
|
| 533 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 534 |
+
if config.rotatinghead is not None:
|
| 535 |
+
self.attn = RotatingheadGPT2Attention(config, layer_idx=layer_idx)
|
| 536 |
+
else:
|
| 537 |
+
self.attn = GPT2Attention(config=config, layer_idx=layer_idx)
|
| 538 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 539 |
+
|
| 540 |
+
if config.add_cross_attention:
|
| 541 |
+
self.crossattention = GPT2Attention(config=config, is_cross_attention=True, layer_idx=layer_idx)
|
| 542 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 543 |
+
|
| 544 |
+
self.mlp = GPT2MLP(inner_dim, config)
|
| 545 |
+
|
| 546 |
+
def forward(
|
| 547 |
+
self,
|
| 548 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 549 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 550 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 551 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 552 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 553 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 554 |
+
use_cache: Optional[bool] = False,
|
| 555 |
+
output_attentions: Optional[bool] = False,
|
| 556 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
| 557 |
+
residual = hidden_states
|
| 558 |
+
hidden_states = self.ln_1(hidden_states)
|
| 559 |
+
attn_outputs = self.attn(
|
| 560 |
+
hidden_states,
|
| 561 |
+
layer_past=layer_past,
|
| 562 |
+
attention_mask=attention_mask,
|
| 563 |
+
head_mask=head_mask,
|
| 564 |
+
use_cache=use_cache,
|
| 565 |
+
output_attentions=output_attentions,
|
| 566 |
+
)
|
| 567 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
| 568 |
+
outputs = attn_outputs[1:]
|
| 569 |
+
# residual connection
|
| 570 |
+
hidden_states = attn_output + residual
|
| 571 |
+
|
| 572 |
+
if encoder_hidden_states is not None:
|
| 573 |
+
# add one self-attention block for cross-attention
|
| 574 |
+
if not hasattr(self, "crossattention"):
|
| 575 |
+
raise ValueError(
|
| 576 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
| 577 |
+
"cross-attention layers by setting `config.add_cross_attention=True`"
|
| 578 |
+
)
|
| 579 |
+
residual = hidden_states
|
| 580 |
+
hidden_states = self.ln_cross_attn(hidden_states)
|
| 581 |
+
cross_attn_outputs = self.crossattention(
|
| 582 |
+
hidden_states,
|
| 583 |
+
attention_mask=attention_mask,
|
| 584 |
+
head_mask=head_mask,
|
| 585 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 586 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 587 |
+
output_attentions=output_attentions,
|
| 588 |
+
)
|
| 589 |
+
attn_output = cross_attn_outputs[0]
|
| 590 |
+
# residual connection
|
| 591 |
+
hidden_states = residual + attn_output
|
| 592 |
+
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
| 593 |
+
|
| 594 |
+
residual = hidden_states
|
| 595 |
+
hidden_states = self.ln_2(hidden_states)
|
| 596 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
| 597 |
+
# residual connection
|
| 598 |
+
hidden_states = residual + feed_forward_hidden_states
|
| 599 |
+
|
| 600 |
+
if use_cache:
|
| 601 |
+
outputs = (hidden_states,) + outputs
|
| 602 |
+
else:
|
| 603 |
+
outputs = (hidden_states,) + outputs[1:]
|
| 604 |
+
|
| 605 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
class RotatingHeadGPT2PretrainedModel(PreTrainedModel):
|
| 609 |
+
"""
|
| 610 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 611 |
+
models.
|
| 612 |
+
"""
|
| 613 |
+
|
| 614 |
+
config_class = RotatingHeadGPT2Config
|
| 615 |
+
load_tf_weights = load_tf_weights_in_gpt2
|
| 616 |
+
base_model_prefix = "transformer"
|
| 617 |
+
is_parallelizable = True
|
| 618 |
+
supports_gradient_checkpointing = True
|
| 619 |
+
_no_split_modules = ["GPT2Block"]
|
| 620 |
+
_skip_keys_device_placement = "past_key_values"
|
| 621 |
+
_supports_flash_attn_2 = True
|
| 622 |
+
_supports_sdpa = True
|
| 623 |
+
|
| 624 |
+
def __init__(self, *inputs, **kwargs):
|
| 625 |
+
super().__init__(*inputs, **kwargs)
|
| 626 |
+
|
| 627 |
+
def _init_weights(self, module):
|
| 628 |
+
"""Initialize the weights."""
|
| 629 |
+
if isinstance(module, (nn.Linear, Conv1D)):
|
| 630 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 631 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 632 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 633 |
+
if module.bias is not None:
|
| 634 |
+
module.bias.data.zero_()
|
| 635 |
+
elif isinstance(module, nn.Embedding):
|
| 636 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 637 |
+
if module.padding_idx is not None:
|
| 638 |
+
module.weight.data[module.padding_idx].zero_()
|
| 639 |
+
elif isinstance(module, nn.LayerNorm):
|
| 640 |
+
module.bias.data.zero_()
|
| 641 |
+
module.weight.data.fill_(1.0)
|
| 642 |
+
|
| 643 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
| 644 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
| 645 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
| 646 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
| 647 |
+
#
|
| 648 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
| 649 |
+
for name, p in module.named_parameters():
|
| 650 |
+
if name == "c_proj.weight":
|
| 651 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
| 652 |
+
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
@dataclass
|
| 656 |
+
class GPT2DoubleHeadsModelOutput(ModelOutput):
|
| 657 |
+
"""
|
| 658 |
+
Base class for outputs of models predicting if two sentences are consecutive or not.
|
| 659 |
+
|
| 660 |
+
Args:
|
| 661 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 662 |
+
Language modeling loss.
|
| 663 |
+
mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
|
| 664 |
+
Multiple choice classification loss.
|
| 665 |
+
logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
|
| 666 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 667 |
+
mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
|
| 668 |
+
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
| 669 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 670 |
+
Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads,
|
| 671 |
+
sequence_length, embed_size_per_head)`).
|
| 672 |
+
|
| 673 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
| 674 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 675 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 676 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
| 677 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
| 678 |
+
|
| 679 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
| 680 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 681 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 682 |
+
sequence_length)`.
|
| 683 |
+
|
| 684 |
+
GPT2Attentions weights after the attention softmax, used to compute the weighted average in the
|
| 685 |
+
self-attention heads.
|
| 686 |
+
"""
|
| 687 |
+
|
| 688 |
+
loss: Optional[torch.FloatTensor] = None
|
| 689 |
+
mc_loss: Optional[torch.FloatTensor] = None
|
| 690 |
+
logits: torch.FloatTensor = None
|
| 691 |
+
mc_logits: torch.FloatTensor = None
|
| 692 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 693 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 694 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
|
| 698 |
+
class RotatingHeadGPT2Model(RotatingHeadGPT2PretrainedModel):
|
| 699 |
+
_supports_param_buffer_assignment = False
|
| 700 |
+
|
| 701 |
+
def __init__(self, config):
|
| 702 |
+
super().__init__(config)
|
| 703 |
+
|
| 704 |
+
self.embed_dim = config.hidden_size
|
| 705 |
+
|
| 706 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 707 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
| 708 |
+
|
| 709 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
| 710 |
+
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
| 711 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
| 712 |
+
|
| 713 |
+
# Model parallel
|
| 714 |
+
self.model_parallel = False
|
| 715 |
+
self.device_map = None
|
| 716 |
+
self.gradient_checkpointing = False
|
| 717 |
+
self._attn_implementation = config._attn_implementation
|
| 718 |
+
|
| 719 |
+
# Initialize weights and apply final processing
|
| 720 |
+
self.post_init()
|
| 721 |
+
|
| 722 |
+
def parallelize(self, device_map=None):
|
| 723 |
+
# Check validity of device_map
|
| 724 |
+
warnings.warn(
|
| 725 |
+
"`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
| 726 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
| 727 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
| 728 |
+
" ...}",
|
| 729 |
+
FutureWarning,
|
| 730 |
+
)
|
| 731 |
+
self.device_map = (
|
| 732 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
| 733 |
+
)
|
| 734 |
+
assert_device_map(self.device_map, len(self.h))
|
| 735 |
+
self.model_parallel = True
|
| 736 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
| 737 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
| 738 |
+
self.wte = self.wte.to(self.first_device)
|
| 739 |
+
self.wpe = self.wpe.to(self.first_device)
|
| 740 |
+
# Load onto devices
|
| 741 |
+
for k, v in self.device_map.items():
|
| 742 |
+
for block in v:
|
| 743 |
+
cuda_device = "cuda:" + str(k)
|
| 744 |
+
self.h[block] = self.h[block].to(cuda_device)
|
| 745 |
+
# ln_f to last
|
| 746 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
| 747 |
+
|
| 748 |
+
def deparallelize(self):
|
| 749 |
+
warnings.warn(
|
| 750 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
| 751 |
+
FutureWarning,
|
| 752 |
+
)
|
| 753 |
+
self.model_parallel = False
|
| 754 |
+
self.device_map = None
|
| 755 |
+
self.first_device = "cpu"
|
| 756 |
+
self.last_device = "cpu"
|
| 757 |
+
self.wte = self.wte.to("cpu")
|
| 758 |
+
self.wpe = self.wpe.to("cpu")
|
| 759 |
+
for index in range(len(self.h)):
|
| 760 |
+
self.h[index] = self.h[index].to("cpu")
|
| 761 |
+
self.ln_f = self.ln_f.to("cpu")
|
| 762 |
+
torch.cuda.empty_cache()
|
| 763 |
+
|
| 764 |
+
def get_input_embeddings(self):
|
| 765 |
+
return self.wte
|
| 766 |
+
|
| 767 |
+
def set_input_embeddings(self, new_embeddings):
|
| 768 |
+
self.wte = new_embeddings
|
| 769 |
+
|
| 770 |
+
def _prune_heads(self, heads_to_prune):
|
| 771 |
+
"""
|
| 772 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
| 773 |
+
"""
|
| 774 |
+
for layer, heads in heads_to_prune.items():
|
| 775 |
+
self.h[layer].attn.prune_heads(heads)
|
| 776 |
+
|
| 777 |
+
def forward(
|
| 778 |
+
self,
|
| 779 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 780 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 781 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 782 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 783 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 784 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 785 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 786 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 787 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 788 |
+
use_cache: Optional[bool] = None,
|
| 789 |
+
output_attentions: Optional[bool] = None,
|
| 790 |
+
output_hidden_states: Optional[bool] = None,
|
| 791 |
+
return_dict: Optional[bool] = None,
|
| 792 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
| 793 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 794 |
+
output_hidden_states = (
|
| 795 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 796 |
+
)
|
| 797 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 798 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 799 |
+
|
| 800 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 801 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 802 |
+
elif input_ids is not None:
|
| 803 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
| 804 |
+
input_shape = input_ids.size()
|
| 805 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 806 |
+
batch_size = input_ids.shape[0]
|
| 807 |
+
elif inputs_embeds is not None:
|
| 808 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 809 |
+
batch_size = inputs_embeds.shape[0]
|
| 810 |
+
else:
|
| 811 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 812 |
+
|
| 813 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 814 |
+
|
| 815 |
+
if token_type_ids is not None:
|
| 816 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
| 817 |
+
|
| 818 |
+
if past_key_values is None:
|
| 819 |
+
past_length = 0
|
| 820 |
+
past_key_values = tuple([None] * len(self.h))
|
| 821 |
+
else:
|
| 822 |
+
past_length = past_key_values[0][0].size(-2)
|
| 823 |
+
if position_ids is None:
|
| 824 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
| 825 |
+
position_ids = position_ids.unsqueeze(0)
|
| 826 |
+
|
| 827 |
+
if inputs_embeds is None:
|
| 828 |
+
inputs_embeds = self.wte(input_ids)
|
| 829 |
+
position_embeds = self.wpe(position_ids)
|
| 830 |
+
hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
|
| 831 |
+
|
| 832 |
+
# Attention mask.
|
| 833 |
+
_use_sdpa = self._attn_implementation == "sdpa" and output_attentions is False and head_mask is None
|
| 834 |
+
attention_mask = attention_mask.view(batch_size, -1) if attention_mask is not None else None
|
| 835 |
+
if self._attn_implementation == "flash_attention_2":
|
| 836 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 837 |
+
elif _use_sdpa:
|
| 838 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
| 839 |
+
attention_mask=attention_mask,
|
| 840 |
+
input_shape=(batch_size, input_shape[-1]),
|
| 841 |
+
inputs_embeds=inputs_embeds,
|
| 842 |
+
past_key_values_length=past_length,
|
| 843 |
+
)
|
| 844 |
+
else:
|
| 845 |
+
if attention_mask is not None:
|
| 846 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
| 847 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
| 848 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
| 849 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
| 850 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
| 851 |
+
attention_mask = attention_mask[:, None, None, :]
|
| 852 |
+
|
| 853 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
| 854 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
| 855 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
| 856 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
| 857 |
+
# effectively the same as removing these entirely.
|
| 858 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
| 859 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
| 860 |
+
|
| 861 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 862 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 863 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
| 864 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 865 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 866 |
+
if encoder_attention_mask is None:
|
| 867 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 868 |
+
if _use_sdpa:
|
| 869 |
+
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
| 870 |
+
mask=encoder_attention_mask, dtype=inputs_embeds.dtype, tgt_len=input_shape[-1]
|
| 871 |
+
)
|
| 872 |
+
elif not self._attn_implementation == "flash_attention_2":
|
| 873 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 874 |
+
else:
|
| 875 |
+
encoder_attention_mask = None
|
| 876 |
+
|
| 877 |
+
# Prepare head mask if needed
|
| 878 |
+
# 1.0 in head_mask indicate we keep the head
|
| 879 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 880 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
| 881 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
| 882 |
+
|
| 883 |
+
if token_type_ids is not None:
|
| 884 |
+
token_type_embeds = self.wte(token_type_ids)
|
| 885 |
+
hidden_states = hidden_states + token_type_embeds
|
| 886 |
+
|
| 887 |
+
hidden_states = self.drop(hidden_states)
|
| 888 |
+
|
| 889 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
| 890 |
+
|
| 891 |
+
if self.gradient_checkpointing and self.training:
|
| 892 |
+
if use_cache:
|
| 893 |
+
logger.warning_once(
|
| 894 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 895 |
+
)
|
| 896 |
+
use_cache = False
|
| 897 |
+
|
| 898 |
+
presents = () if use_cache else None
|
| 899 |
+
all_self_attentions = () if output_attentions else None
|
| 900 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
| 901 |
+
all_hidden_states = () if output_hidden_states else None
|
| 902 |
+
for i in range(len(self.h)):
|
| 903 |
+
block, layer_past = self.h[i], past_key_values[i]
|
| 904 |
+
# Model parallel
|
| 905 |
+
if self.model_parallel:
|
| 906 |
+
torch.cuda.set_device(hidden_states.device)
|
| 907 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
| 908 |
+
if layer_past is not None:
|
| 909 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
| 910 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
| 911 |
+
if attention_mask is not None:
|
| 912 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
| 913 |
+
if isinstance(head_mask, torch.Tensor):
|
| 914 |
+
head_mask = head_mask.to(hidden_states.device)
|
| 915 |
+
if output_hidden_states:
|
| 916 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 917 |
+
|
| 918 |
+
if self.gradient_checkpointing and self.training:
|
| 919 |
+
outputs = self._gradient_checkpointing_func(
|
| 920 |
+
block.__call__,
|
| 921 |
+
hidden_states,
|
| 922 |
+
None,
|
| 923 |
+
attention_mask,
|
| 924 |
+
head_mask[i],
|
| 925 |
+
encoder_hidden_states,
|
| 926 |
+
encoder_attention_mask,
|
| 927 |
+
use_cache,
|
| 928 |
+
output_attentions,
|
| 929 |
+
)
|
| 930 |
+
else:
|
| 931 |
+
outputs = block(
|
| 932 |
+
hidden_states,
|
| 933 |
+
layer_past=layer_past,
|
| 934 |
+
attention_mask=attention_mask,
|
| 935 |
+
head_mask=head_mask[i],
|
| 936 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 937 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 938 |
+
use_cache=use_cache,
|
| 939 |
+
output_attentions=output_attentions,
|
| 940 |
+
)
|
| 941 |
+
|
| 942 |
+
hidden_states = outputs[0]
|
| 943 |
+
if use_cache is True:
|
| 944 |
+
presents = presents + (outputs[1],)
|
| 945 |
+
|
| 946 |
+
if output_attentions:
|
| 947 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
| 948 |
+
if self.config.add_cross_attention:
|
| 949 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
| 950 |
+
|
| 951 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
| 952 |
+
if self.model_parallel:
|
| 953 |
+
for k, v in self.device_map.items():
|
| 954 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
| 955 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
| 956 |
+
|
| 957 |
+
hidden_states = self.ln_f(hidden_states)
|
| 958 |
+
|
| 959 |
+
hidden_states = hidden_states.view(output_shape)
|
| 960 |
+
# Add last hidden state
|
| 961 |
+
if output_hidden_states:
|
| 962 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 963 |
+
|
| 964 |
+
if not return_dict:
|
| 965 |
+
return tuple(
|
| 966 |
+
v
|
| 967 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
| 968 |
+
if v is not None
|
| 969 |
+
)
|
| 970 |
+
|
| 971 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 972 |
+
last_hidden_state=hidden_states,
|
| 973 |
+
past_key_values=presents,
|
| 974 |
+
hidden_states=all_hidden_states,
|
| 975 |
+
attentions=all_self_attentions,
|
| 976 |
+
cross_attentions=all_cross_attentions,
|
| 977 |
+
)
|
| 978 |
+
|
| 979 |
+
|
| 980 |
+
class RotatingHeadGPT2LMHeadModel(RotatingHeadGPT2PretrainedModel, GenerationMixin):
|
| 981 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 982 |
+
|
| 983 |
+
def __init__(self, config):
|
| 984 |
+
super().__init__(config)
|
| 985 |
+
self.transformer = RotatingHeadGPT2Model(config)
|
| 986 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 987 |
+
|
| 988 |
+
# Model parallel
|
| 989 |
+
self.model_parallel = False
|
| 990 |
+
self.device_map = None
|
| 991 |
+
|
| 992 |
+
# Initialize weights and apply final processing
|
| 993 |
+
self.post_init()
|
| 994 |
+
|
| 995 |
+
def parallelize(self, device_map=None):
|
| 996 |
+
warnings.warn(
|
| 997 |
+
"`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
| 998 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
| 999 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
| 1000 |
+
" 0, 'transformer.h.1': 1, ...}",
|
| 1001 |
+
FutureWarning,
|
| 1002 |
+
)
|
| 1003 |
+
self.device_map = (
|
| 1004 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
| 1005 |
+
if device_map is None
|
| 1006 |
+
else device_map
|
| 1007 |
+
)
|
| 1008 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
| 1009 |
+
self.transformer.parallelize(self.device_map)
|
| 1010 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
| 1011 |
+
self.model_parallel = True
|
| 1012 |
+
|
| 1013 |
+
def deparallelize(self):
|
| 1014 |
+
warnings.warn(
|
| 1015 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
| 1016 |
+
FutureWarning,
|
| 1017 |
+
)
|
| 1018 |
+
self.transformer.deparallelize()
|
| 1019 |
+
self.transformer = self.transformer.to("cpu")
|
| 1020 |
+
self.lm_head = self.lm_head.to("cpu")
|
| 1021 |
+
self.model_parallel = False
|
| 1022 |
+
torch.cuda.empty_cache()
|
| 1023 |
+
|
| 1024 |
+
def get_output_embeddings(self):
|
| 1025 |
+
return self.lm_head
|
| 1026 |
+
|
| 1027 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1028 |
+
self.lm_head = new_embeddings
|
| 1029 |
+
|
| 1030 |
+
def forward(
|
| 1031 |
+
self,
|
| 1032 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1033 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1034 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1035 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1036 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1037 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1038 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1039 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 1040 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 1041 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1042 |
+
use_cache: Optional[bool] = None,
|
| 1043 |
+
output_attentions: Optional[bool] = None,
|
| 1044 |
+
output_hidden_states: Optional[bool] = None,
|
| 1045 |
+
return_dict: Optional[bool] = None,
|
| 1046 |
+
**kwargs,
|
| 1047 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
| 1048 |
+
r"""
|
| 1049 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1050 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 1051 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 1052 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
| 1053 |
+
"""
|
| 1054 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1055 |
+
|
| 1056 |
+
transformer_outputs = self.transformer(
|
| 1057 |
+
input_ids,
|
| 1058 |
+
past_key_values=past_key_values,
|
| 1059 |
+
attention_mask=attention_mask,
|
| 1060 |
+
token_type_ids=token_type_ids,
|
| 1061 |
+
position_ids=position_ids,
|
| 1062 |
+
head_mask=head_mask,
|
| 1063 |
+
inputs_embeds=inputs_embeds,
|
| 1064 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1065 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1066 |
+
use_cache=use_cache,
|
| 1067 |
+
output_attentions=output_attentions,
|
| 1068 |
+
output_hidden_states=output_hidden_states,
|
| 1069 |
+
return_dict=return_dict,
|
| 1070 |
+
)
|
| 1071 |
+
hidden_states = transformer_outputs[0]
|
| 1072 |
+
|
| 1073 |
+
# Set device for model parallelism
|
| 1074 |
+
if self.model_parallel:
|
| 1075 |
+
torch.cuda.set_device(self.transformer.first_device)
|
| 1076 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
| 1077 |
+
|
| 1078 |
+
lm_logits = self.lm_head(hidden_states)
|
| 1079 |
+
|
| 1080 |
+
loss = None
|
| 1081 |
+
if labels is not None:
|
| 1082 |
+
# Flatten the tokens
|
| 1083 |
+
loss = self.loss_function(
|
| 1084 |
+
lm_logits,
|
| 1085 |
+
labels,
|
| 1086 |
+
vocab_size=self.config.vocab_size,
|
| 1087 |
+
**kwargs,
|
| 1088 |
+
)
|
| 1089 |
+
|
| 1090 |
+
if not return_dict:
|
| 1091 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 1092 |
+
return ((loss,) + output) if loss is not None else output
|
| 1093 |
+
|
| 1094 |
+
return CausalLMOutputWithCrossAttentions(
|
| 1095 |
+
loss=loss,
|
| 1096 |
+
logits=lm_logits,
|
| 1097 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1098 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1099 |
+
attentions=transformer_outputs.attentions,
|
| 1100 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
| 1101 |
+
)
|
| 1102 |
+
|
| 1103 |
+
@staticmethod
|
| 1104 |
+
def _reorder_cache(
|
| 1105 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
| 1106 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
| 1107 |
+
"""
|
| 1108 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
| 1109 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
| 1110 |
+
beam_idx at every generation step.
|
| 1111 |
+
"""
|
| 1112 |
+
return tuple(
|
| 1113 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
| 1114 |
+
for layer_past in past_key_values
|
| 1115 |
+
)
|
| 1116 |
+
|
| 1117 |
+
__all__ = [
|
| 1118 |
+
"RotatingHeadGPT2LMHeadModel",
|
| 1119 |
+
"RotatingHeadGPT2Model",
|
| 1120 |
+
"RotatingHeadGPT2PretrainedModel",
|
| 1121 |
+
"load_tf_weights_in_gpt2",
|
| 1122 |
+
]
|
| 1123 |
+
|
| 1124 |
+
|
| 1125 |
+
if __name__ == "__main__":
|
| 1126 |
+
cg = GPT2Config.from_pretrained("gpt2-medium")
|
| 1127 |
+
cg.rotatinghead = 'gp'
|
| 1128 |
+
model = RotatingHeadGPT2LMHeadModel(cg)
|
| 1129 |
+
from src.utils.model_utlis import print_trainable_parameters
|
| 1130 |
+
print_trainable_parameters(model)
|
| 1131 |
+
model(torch.randint(0, 10000, (1, 100)))
|
| 1132 |
+
print()
|