shivanandmn's picture
Model save
e9478da verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - bleu
model-index:
  - name: parallel-mean-bottleneck-gpt2-medium-wikitext
    results: []

parallel-mean-bottleneck-gpt2-medium-wikitext

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1864
  • Accuracy: 0.4195
  • Perplexity: 24.2005
  • Bleu: 0.1476

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Perplexity Bleu
6.0443 0.2806 500 5.9164 0.1901 371.0844 0.0350
5.0429 0.5612 1000 4.8947 0.2638 133.5839 0.0647
4.3531 0.8418 1500 4.2426 0.3176 69.5891 0.0829
3.9503 1.1223 2000 3.8874 0.3517 48.7842 0.1050
3.7613 1.4029 2500 3.7124 0.3672 40.9504 0.1211
3.6548 1.6835 3000 3.5911 0.3780 36.2753 0.1308
3.5531 1.9641 3500 3.5068 0.3860 33.3428 0.1340
3.4344 2.2447 4000 3.4411 0.3920 31.2224 0.1356
3.3743 2.5253 4500 3.3875 0.3972 29.5917 0.1389
3.3443 2.8058 5000 3.3429 0.4016 28.3017 0.1373
3.225 3.0864 5500 3.3080 0.4055 27.3310 0.1419
3.2185 3.3670 6000 3.2781 0.4090 26.5258 0.1463
3.1972 3.6476 6500 3.2500 0.4121 25.7899 0.1453
3.1719 3.9282 7000 3.2268 0.4144 25.1990 0.1465
3.1052 4.2088 7500 3.2109 0.4162 24.8018 0.1472
3.0672 4.4893 8000 3.1978 0.4179 24.4788 0.1469
3.0773 4.7699 8500 3.1864 0.4195 24.2005 0.1476

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0