File size: 2,942 Bytes
f5338ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37eb7f1
 
 
 
f5338ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37eb7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5338ca
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- accuracy
- bleu
model-index:
- name: parallel-mean-bottleneck-gpt2-medium-wikitext
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# parallel-mean-bottleneck-gpt2-medium-wikitext

This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1861
- Accuracy: 0.4193
- Perplexity: 24.1930
- Bleu: 0.1440

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Perplexity | Bleu   |
|:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|
| 6.0438        | 0.2806 | 500  | 5.9200          | 0.1897   | 372.4009   | 0.0359 |
| 5.0422        | 0.5612 | 1000 | 4.8934          | 0.2636   | 133.4091   | 0.0610 |
| 4.3494        | 0.8418 | 1500 | 4.2389          | 0.3183   | 69.3337    | 0.0833 |
| 3.9486        | 1.1223 | 2000 | 3.8856          | 0.3521   | 48.6953    | 0.1037 |
| 3.7605        | 1.4029 | 2500 | 3.7143          | 0.3671   | 41.0301    | 0.1206 |
| 3.6544        | 1.6835 | 3000 | 3.5898          | 0.3781   | 36.2282    | 0.1332 |
| 3.5527        | 1.9641 | 3500 | 3.5051          | 0.3862   | 33.2836    | 0.1349 |
| 3.4346        | 2.2447 | 4000 | 3.4410          | 0.3919   | 31.2181    | 0.1335 |
| 3.374         | 2.5253 | 4500 | 3.3867          | 0.3972   | 29.5672    | 0.1354 |
| 3.3442        | 2.8058 | 5000 | 3.3410          | 0.4017   | 28.2468    | 0.1405 |
| 3.2251        | 3.0864 | 5500 | 3.3072          | 0.4055   | 27.3093    | 0.1404 |
| 3.2187        | 3.3670 | 6000 | 3.2781          | 0.4088   | 26.5242    | 0.1401 |
| 3.1975        | 3.6476 | 6500 | 3.2494          | 0.4118   | 25.7753    | 0.1433 |
| 3.172         | 3.9282 | 7000 | 3.2276          | 0.4142   | 25.2178    | 0.1445 |
| 3.1055        | 4.2088 | 7500 | 3.2109          | 0.4163   | 24.8014    | 0.1447 |
| 3.0676        | 4.4893 | 8000 | 3.1977          | 0.4178   | 24.4763    | 0.1453 |
| 3.0779        | 4.7699 | 8500 | 3.1861          | 0.4193   | 24.1930    | 0.1440 |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0