Training in progress, step 500
Browse files- all_results.json +17 -0
- config.json +5 -0
- eval_results.json +12 -0
- model.safetensors +2 -2
- modeling_parallel_gpt2.py +496 -0
- train_results.json +8 -0
- trainer_state.json +1682 -0
- training_args.bin +1 -1
all_results.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 4.998736842105263,
|
3 |
+
"eval_accuracy": 0.42753137093133137,
|
4 |
+
"eval_bleu": 0.14672943718286596,
|
5 |
+
"eval_loss": 3.099884033203125,
|
6 |
+
"eval_perplexity": 22.195377205390898,
|
7 |
+
"eval_runtime": 10.965,
|
8 |
+
"eval_samples": 1141,
|
9 |
+
"eval_samples_per_second": 104.059,
|
10 |
+
"eval_steps_per_second": 6.566,
|
11 |
+
"perplexity": 22.195377205390898,
|
12 |
+
"total_flos": 1.0584067483285586e+18,
|
13 |
+
"train_loss": 3.584141966119902,
|
14 |
+
"train_runtime": 28526.973,
|
15 |
+
"train_samples_per_second": 19.98,
|
16 |
+
"train_steps_per_second": 0.624
|
17 |
+
}
|
config.json
CHANGED
@@ -4,7 +4,12 @@
|
|
4 |
"ParallelGPT2LMHeadModel"
|
5 |
],
|
6 |
"attn_pdrop": 0.1,
|
|
|
|
|
|
|
|
|
7 |
"bos_token_id": 50256,
|
|
|
8 |
"embd_pdrop": 0.1,
|
9 |
"eos_token_id": 50256,
|
10 |
"initializer_range": 0.02,
|
|
|
4 |
"ParallelGPT2LMHeadModel"
|
5 |
],
|
6 |
"attn_pdrop": 0.1,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "modeling_parallel_gpt2.ParallelGPT2Config",
|
9 |
+
"AutoModel": "modeling_parallel_gpt2.ParallelGPT2LMHeadModel"
|
10 |
+
},
|
11 |
"bos_token_id": 50256,
|
12 |
+
"bottleneck_method": "concat",
|
13 |
"embd_pdrop": 0.1,
|
14 |
"eos_token_id": 50256,
|
15 |
"initializer_range": 0.02,
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 4.998736842105263,
|
3 |
+
"eval_accuracy": 0.42753137093133137,
|
4 |
+
"eval_bleu": 0.14672943718286596,
|
5 |
+
"eval_loss": 3.099884033203125,
|
6 |
+
"eval_perplexity": 22.195377205390898,
|
7 |
+
"eval_runtime": 10.965,
|
8 |
+
"eval_samples": 1141,
|
9 |
+
"eval_samples_per_second": 104.059,
|
10 |
+
"eval_steps_per_second": 6.566,
|
11 |
+
"perplexity": 22.195377205390898
|
12 |
+
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d42579b7903b46b75f5aecc1f943832ad871b6383666ceb81c3a200b23dcd3f
|
3 |
+
size 1427715776
|
modeling_parallel_gpt2.py
ADDED
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""PyTorch OpenAI GPT-2 model modified to support parallel-gpt2, code copied from Huggingface"""
|
3 |
+
|
4 |
+
|
5 |
+
import warnings
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from transformers.modeling_outputs import (
|
13 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
14 |
+
CausalLMOutputWithCrossAttentions
|
15 |
+
)
|
16 |
+
from transformers.generation import GenerationMixin
|
17 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
18 |
+
from src.models.modeling_gpt2 import GPT2PreTrainedModel, GPT2Block
|
19 |
+
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
20 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
|
21 |
+
|
22 |
+
class ParallelGPT2Config(GPT2Config):
|
23 |
+
model_type = "parallel-gpt2"
|
24 |
+
architectures = ["ParallelGPT2LMHeadModel"]
|
25 |
+
|
26 |
+
class ParallelGPT2PretrainedModel(GPT2PreTrainedModel):
|
27 |
+
config_class = ParallelGPT2Config
|
28 |
+
|
29 |
+
class ParallelGPT2Model(ParallelGPT2PretrainedModel):
|
30 |
+
_supports_param_buffer_assignment = False
|
31 |
+
|
32 |
+
def __init__(self, config):
|
33 |
+
super().__init__(config)
|
34 |
+
|
35 |
+
self.embed_dim = config.hidden_size
|
36 |
+
|
37 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
38 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
39 |
+
|
40 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
41 |
+
if config.num_hidden_layers % 2 != 0:
|
42 |
+
raise ValueError("Number of hidden layers must be even")
|
43 |
+
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
44 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
45 |
+
self.config.bottleneck_method = getattr(config, "bottleneck_method", "mean")
|
46 |
+
if self.config.bottleneck_method=="concate":
|
47 |
+
self.bottleneck = nn.Linear(2*self.embed_dim, self.embed_dim)
|
48 |
+
|
49 |
+
# Model parallel
|
50 |
+
self.model_parallel = False
|
51 |
+
self.device_map = None
|
52 |
+
self.gradient_checkpointing = False
|
53 |
+
self._attn_implementation = config._attn_implementation
|
54 |
+
|
55 |
+
# Initialize weights and apply final processing
|
56 |
+
self.post_init()
|
57 |
+
|
58 |
+
|
59 |
+
def parallelize(self, device_map=None):
|
60 |
+
# Check validity of device_map
|
61 |
+
warnings.warn(
|
62 |
+
"`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
63 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
64 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
65 |
+
" ...}",
|
66 |
+
FutureWarning,
|
67 |
+
)
|
68 |
+
self.device_map = (
|
69 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
70 |
+
)
|
71 |
+
assert_device_map(self.device_map, len(self.h))
|
72 |
+
self.model_parallel = True
|
73 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
74 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
75 |
+
self.wte = self.wte.to(self.first_device)
|
76 |
+
self.wpe = self.wpe.to(self.first_device)
|
77 |
+
# Load onto devices
|
78 |
+
for k, v in self.device_map.items():
|
79 |
+
for block in v:
|
80 |
+
cuda_device = "cuda:" + str(k)
|
81 |
+
self.h[block] = self.h[block].to(cuda_device)
|
82 |
+
# ln_f to last
|
83 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
84 |
+
|
85 |
+
def deparallelize(self):
|
86 |
+
self.model_parallel = False
|
87 |
+
self.device_map = None
|
88 |
+
self.first_device = "cpu"
|
89 |
+
self.last_device = "cpu"
|
90 |
+
self.wte = self.wte.to("cpu")
|
91 |
+
self.wpe = self.wpe.to("cpu")
|
92 |
+
for index in range(len(self.h)):
|
93 |
+
self.h[index] = self.h[index].to("cpu")
|
94 |
+
self.ln_f = self.ln_f.to("cpu")
|
95 |
+
torch.cuda.empty_cache()
|
96 |
+
|
97 |
+
def get_input_embeddings(self):
|
98 |
+
return self.wte
|
99 |
+
|
100 |
+
def set_input_embeddings(self, new_embeddings):
|
101 |
+
self.wte = new_embeddings
|
102 |
+
|
103 |
+
def _prune_heads(self, heads_to_prune):
|
104 |
+
"""
|
105 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
106 |
+
"""
|
107 |
+
for layer, heads in heads_to_prune.items():
|
108 |
+
self.h[layer].attn.prune_heads(heads)
|
109 |
+
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self,
|
113 |
+
input_ids: Optional[torch.LongTensor] = None,
|
114 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
115 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
116 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
117 |
+
position_ids: Optional[torch.LongTensor] = None,
|
118 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
119 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
120 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
121 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
122 |
+
use_cache: Optional[bool] = None,
|
123 |
+
output_attentions: Optional[bool] = None,
|
124 |
+
output_hidden_states: Optional[bool] = None,
|
125 |
+
return_dict: Optional[bool] = None,
|
126 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
127 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
128 |
+
output_hidden_states = (
|
129 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
130 |
+
)
|
131 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
132 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
133 |
+
|
134 |
+
if input_ids is not None and inputs_embeds is not None:
|
135 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
136 |
+
elif input_ids is not None:
|
137 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
138 |
+
input_shape = input_ids.size()
|
139 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
140 |
+
batch_size = input_ids.shape[0]
|
141 |
+
elif inputs_embeds is not None:
|
142 |
+
input_shape = inputs_embeds.size()[:-1]
|
143 |
+
batch_size = inputs_embeds.shape[0]
|
144 |
+
else:
|
145 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
146 |
+
|
147 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
148 |
+
|
149 |
+
if token_type_ids is not None:
|
150 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
151 |
+
|
152 |
+
if past_key_values is None:
|
153 |
+
past_length = 0
|
154 |
+
past_key_values = tuple([None] * len(self.h))
|
155 |
+
else:
|
156 |
+
past_length = past_key_values[0][0].size(-2)
|
157 |
+
if position_ids is None:
|
158 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
159 |
+
position_ids = position_ids.unsqueeze(0)
|
160 |
+
|
161 |
+
if inputs_embeds is None:
|
162 |
+
inputs_embeds = self.wte(input_ids)
|
163 |
+
position_embeds = self.wpe(position_ids)
|
164 |
+
hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
|
165 |
+
|
166 |
+
# Attention mask.
|
167 |
+
_use_sdpa = self._attn_implementation == "sdpa" and output_attentions is False and head_mask is None
|
168 |
+
attention_mask = attention_mask.view(batch_size, -1) if attention_mask is not None else None
|
169 |
+
if self._attn_implementation == "flash_attention_2":
|
170 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
171 |
+
elif _use_sdpa:
|
172 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
173 |
+
attention_mask=attention_mask,
|
174 |
+
input_shape=(batch_size, input_shape[-1]),
|
175 |
+
inputs_embeds=inputs_embeds,
|
176 |
+
past_key_values_length=past_length,
|
177 |
+
)
|
178 |
+
else:
|
179 |
+
if attention_mask is not None:
|
180 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
181 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
182 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
183 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
184 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
185 |
+
attention_mask = attention_mask[:, None, None, :]
|
186 |
+
|
187 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
188 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
189 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
190 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
191 |
+
# effectively the same as removing these entirely.
|
192 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
193 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
194 |
+
|
195 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
196 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
197 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
198 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
199 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
200 |
+
if encoder_attention_mask is None:
|
201 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
202 |
+
if _use_sdpa:
|
203 |
+
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
204 |
+
mask=encoder_attention_mask, dtype=inputs_embeds.dtype, tgt_len=input_shape[-1]
|
205 |
+
)
|
206 |
+
elif not self._attn_implementation == "flash_attention_2":
|
207 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
208 |
+
else:
|
209 |
+
encoder_attention_mask = None
|
210 |
+
|
211 |
+
# Prepare head mask if needed
|
212 |
+
# 1.0 in head_mask indicate we keep the head
|
213 |
+
# attention_probs has shape bsz x n_heads x N x N
|
214 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
215 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
216 |
+
|
217 |
+
if token_type_ids is not None:
|
218 |
+
token_type_embeds = self.wte(token_type_ids)
|
219 |
+
hidden_states = hidden_states + token_type_embeds
|
220 |
+
|
221 |
+
hidden_states = self.drop(hidden_states)
|
222 |
+
|
223 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
224 |
+
|
225 |
+
if self.gradient_checkpointing and self.training:
|
226 |
+
if use_cache:
|
227 |
+
logger.warning_once(
|
228 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
229 |
+
)
|
230 |
+
use_cache = False
|
231 |
+
|
232 |
+
presents = () if use_cache else None
|
233 |
+
all_self_attentions_left = () if output_attentions else None
|
234 |
+
all_self_attentions_right = () if output_attentions else None
|
235 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
236 |
+
all_hidden_states = () if output_hidden_states else None
|
237 |
+
for i in range(0, len(self.h), 2):
|
238 |
+
block_left, layer_past_left = self.h[i], past_key_values[i]
|
239 |
+
block_right, layer_past_right = self.h[i+1], past_key_values[i+1]
|
240 |
+
# Model parallel
|
241 |
+
if self.model_parallel:
|
242 |
+
torch.cuda.set_device(hidden_states.device)
|
243 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
244 |
+
if layer_past is not None:
|
245 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
246 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
247 |
+
if attention_mask is not None:
|
248 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
249 |
+
if isinstance(head_mask, torch.Tensor):
|
250 |
+
head_mask = head_mask.to(hidden_states.device)
|
251 |
+
if output_hidden_states:
|
252 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
253 |
+
|
254 |
+
if self.gradient_checkpointing and self.training:
|
255 |
+
outputs_left = self._gradient_checkpointing_func(
|
256 |
+
block_left.__call__,
|
257 |
+
hidden_states,
|
258 |
+
None,
|
259 |
+
attention_mask,
|
260 |
+
head_mask[i],
|
261 |
+
encoder_hidden_states,
|
262 |
+
encoder_attention_mask,
|
263 |
+
use_cache,
|
264 |
+
output_attentions,
|
265 |
+
)
|
266 |
+
outputs_right = self._gradient_checkpointing_func(
|
267 |
+
block_right.__call__,
|
268 |
+
hidden_states,
|
269 |
+
None,
|
270 |
+
attention_mask,
|
271 |
+
head_mask[i+1],
|
272 |
+
encoder_hidden_states,
|
273 |
+
encoder_attention_mask,
|
274 |
+
use_cache,
|
275 |
+
output_attentions,
|
276 |
+
)
|
277 |
+
else:
|
278 |
+
outputs_left = block_left(
|
279 |
+
hidden_states,
|
280 |
+
layer_past=layer_past_left,
|
281 |
+
attention_mask=attention_mask,
|
282 |
+
head_mask=head_mask[i],
|
283 |
+
encoder_hidden_states=encoder_hidden_states,
|
284 |
+
encoder_attention_mask=encoder_attention_mask,
|
285 |
+
use_cache=use_cache,
|
286 |
+
output_attentions=output_attentions,
|
287 |
+
)
|
288 |
+
outputs_right = block_right(
|
289 |
+
hidden_states,
|
290 |
+
layer_past=layer_past_right,
|
291 |
+
attention_mask=attention_mask,
|
292 |
+
head_mask=head_mask[i+1],
|
293 |
+
encoder_hidden_states=encoder_hidden_states,
|
294 |
+
encoder_attention_mask=encoder_attention_mask,
|
295 |
+
use_cache=use_cache,
|
296 |
+
output_attentions=output_attentions,
|
297 |
+
)
|
298 |
+
if self.config.bottleneck_method=="concate":
|
299 |
+
hidden_states = torch.cat((outputs_left[0], outputs_right[0]), dim=-1)
|
300 |
+
hidden_states = self.bottleneck(hidden_states)
|
301 |
+
elif self.config.bottleneck_method=="add":
|
302 |
+
hidden_states = (outputs_left[0] + outputs_right[0]) ## taking add
|
303 |
+
elif self.config.bottleneck_method=="mean":
|
304 |
+
hidden_states = (outputs_left[0] + outputs_right[0]) / 2 ## taking mean
|
305 |
+
if use_cache is True:
|
306 |
+
presents = presents + (outputs_left[1], outputs_right[1])
|
307 |
+
|
308 |
+
if output_attentions:
|
309 |
+
all_self_attentions_left = all_self_attentions_left + (outputs_left[2 if use_cache else 1],)
|
310 |
+
all_self_attentions_right = all_self_attentions_right + (outputs_right[2 if use_cache else 1],)
|
311 |
+
if self.config.add_cross_attention:
|
312 |
+
all_cross_attentions_left = all_cross_attentions_left + (outputs_left[3 if use_cache else 2],)
|
313 |
+
all_cross_attentions_right = all_cross_attentions_right + (outputs_right[3 if use_cache else 2],)
|
314 |
+
|
315 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
316 |
+
if self.model_parallel:
|
317 |
+
for k, v in self.device_map.items():
|
318 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
319 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
320 |
+
|
321 |
+
hidden_states = self.ln_f(hidden_states)
|
322 |
+
|
323 |
+
hidden_states = hidden_states.view(output_shape)
|
324 |
+
# Add last hidden state
|
325 |
+
if output_hidden_states:
|
326 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
327 |
+
|
328 |
+
if not return_dict:
|
329 |
+
return tuple(
|
330 |
+
v
|
331 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions_left, all_cross_attentions]
|
332 |
+
if v is not None
|
333 |
+
)
|
334 |
+
|
335 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
336 |
+
last_hidden_state=hidden_states,
|
337 |
+
past_key_values=presents,
|
338 |
+
hidden_states=all_hidden_states,
|
339 |
+
attentions=all_self_attentions_left,
|
340 |
+
cross_attentions=all_cross_attentions,
|
341 |
+
)
|
342 |
+
|
343 |
+
|
344 |
+
class ParallelGPT2LMHeadModel(ParallelGPT2PretrainedModel, GenerationMixin):
|
345 |
+
_tied_weights_keys = ["lm_head.weight"]
|
346 |
+
|
347 |
+
def __init__(self, config):
|
348 |
+
super().__init__(config)
|
349 |
+
self.transformer = ParallelGPT2Model(config)
|
350 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
351 |
+
|
352 |
+
# Model parallel
|
353 |
+
self.model_parallel = False
|
354 |
+
self.device_map = None
|
355 |
+
|
356 |
+
# Initialize weights and apply final processing
|
357 |
+
self.post_init()
|
358 |
+
|
359 |
+
def parallelize(self, device_map=None):
|
360 |
+
warnings.warn(
|
361 |
+
"`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
362 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
363 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
364 |
+
" 0, 'transformer.h.1': 1, ...}",
|
365 |
+
FutureWarning,
|
366 |
+
)
|
367 |
+
self.device_map = (
|
368 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
369 |
+
if device_map is None
|
370 |
+
else device_map
|
371 |
+
)
|
372 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
373 |
+
self.transformer.parallelize(self.device_map)
|
374 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
375 |
+
self.model_parallel = True
|
376 |
+
|
377 |
+
def deparallelize(self):
|
378 |
+
self.transformer.deparallelize()
|
379 |
+
self.transformer = self.transformer.to("cpu")
|
380 |
+
self.lm_head = self.lm_head.to("cpu")
|
381 |
+
self.model_parallel = False
|
382 |
+
torch.cuda.empty_cache()
|
383 |
+
|
384 |
+
def get_output_embeddings(self):
|
385 |
+
return self.lm_head
|
386 |
+
|
387 |
+
def set_output_embeddings(self, new_embeddings):
|
388 |
+
self.lm_head = new_embeddings
|
389 |
+
|
390 |
+
def forward(
|
391 |
+
self,
|
392 |
+
input_ids: Optional[torch.LongTensor] = None,
|
393 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
394 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
395 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
396 |
+
position_ids: Optional[torch.LongTensor] = None,
|
397 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
398 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
399 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
400 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
401 |
+
labels: Optional[torch.LongTensor] = None,
|
402 |
+
use_cache: Optional[bool] = None,
|
403 |
+
output_attentions: Optional[bool] = None,
|
404 |
+
output_hidden_states: Optional[bool] = None,
|
405 |
+
return_dict: Optional[bool] = None,
|
406 |
+
**kwargs,
|
407 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
408 |
+
r"""
|
409 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
410 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
411 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
412 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
413 |
+
"""
|
414 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
415 |
+
|
416 |
+
transformer_outputs = self.transformer(
|
417 |
+
input_ids,
|
418 |
+
past_key_values=past_key_values,
|
419 |
+
attention_mask=attention_mask,
|
420 |
+
token_type_ids=token_type_ids,
|
421 |
+
position_ids=position_ids,
|
422 |
+
head_mask=head_mask,
|
423 |
+
inputs_embeds=inputs_embeds,
|
424 |
+
encoder_hidden_states=encoder_hidden_states,
|
425 |
+
encoder_attention_mask=encoder_attention_mask,
|
426 |
+
use_cache=use_cache,
|
427 |
+
output_attentions=output_attentions,
|
428 |
+
output_hidden_states=output_hidden_states,
|
429 |
+
return_dict=return_dict,
|
430 |
+
)
|
431 |
+
hidden_states = transformer_outputs[0]
|
432 |
+
|
433 |
+
# Set device for model parallelism
|
434 |
+
if self.model_parallel:
|
435 |
+
torch.cuda.set_device(self.transformer.first_device)
|
436 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
437 |
+
|
438 |
+
lm_logits = self.lm_head(hidden_states)
|
439 |
+
|
440 |
+
loss = None
|
441 |
+
if labels is not None:
|
442 |
+
# Flatten the tokens
|
443 |
+
loss = self.loss_function(
|
444 |
+
lm_logits,
|
445 |
+
labels,
|
446 |
+
vocab_size=self.config.vocab_size,
|
447 |
+
**kwargs,
|
448 |
+
)
|
449 |
+
|
450 |
+
if not return_dict:
|
451 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
452 |
+
return ((loss,) + output) if loss is not None else output
|
453 |
+
|
454 |
+
return CausalLMOutputWithCrossAttentions(
|
455 |
+
loss=loss,
|
456 |
+
logits=lm_logits,
|
457 |
+
past_key_values=transformer_outputs.past_key_values,
|
458 |
+
hidden_states=transformer_outputs.hidden_states,
|
459 |
+
attentions=transformer_outputs.attentions,
|
460 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
461 |
+
)
|
462 |
+
|
463 |
+
@staticmethod
|
464 |
+
def _reorder_cache(
|
465 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
466 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
467 |
+
"""
|
468 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
469 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
470 |
+
beam_idx at every generation step.
|
471 |
+
"""
|
472 |
+
return tuple(
|
473 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
474 |
+
for layer_past in past_key_values
|
475 |
+
)
|
476 |
+
|
477 |
+
|
478 |
+
|
479 |
+
from transformers import AutoConfig, AutoModel
|
480 |
+
AutoConfig.register("parallel-gpt2", ParallelGPT2Config)
|
481 |
+
AutoModel.register(ParallelGPT2Config, ParallelGPT2LMHeadModel)
|
482 |
+
|
483 |
+
__all__ = [
|
484 |
+
"ParallelGPT2LMHeadModel",
|
485 |
+
"ParallelGPT2Model",
|
486 |
+
"ParallelGPT2Config",
|
487 |
+
]
|
488 |
+
|
489 |
+
|
490 |
+
if __name__ == "__main__":
|
491 |
+
cg = ParallelGPT2Config.from_pretrained("gpt2-medium", architectures=["ParallelGPT2LMHeadModel"])
|
492 |
+
model = ParallelGPT2LMHeadModel(cg)
|
493 |
+
from src.utils.model_utlis import print_trainable_parameters
|
494 |
+
print_trainable_parameters(model)
|
495 |
+
model(torch.randint(0, 10000, (1, 100)))
|
496 |
+
print()
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 4.998736842105263,
|
3 |
+
"total_flos": 1.0584067483285586e+18,
|
4 |
+
"train_loss": 3.584141966119902,
|
5 |
+
"train_runtime": 28526.973,
|
6 |
+
"train_samples_per_second": 19.98,
|
7 |
+
"train_steps_per_second": 0.624
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1682 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 3.101016044616699,
|
3 |
+
"best_model_checkpoint": "./output/models/parallel-gpt2-medium-wikitext/checkpoint-17500",
|
4 |
+
"epoch": 4.998736842105263,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 17810,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.028070175438596492,
|
13 |
+
"grad_norm": 2.028989553451538,
|
14 |
+
"learning_rate": 5.614823133071308e-06,
|
15 |
+
"loss": 9.2256,
|
16 |
+
"step": 100
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.056140350877192984,
|
20 |
+
"grad_norm": 1.8919556140899658,
|
21 |
+
"learning_rate": 1.1229646266142617e-05,
|
22 |
+
"loss": 7.8733,
|
23 |
+
"step": 200
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.08421052631578947,
|
27 |
+
"grad_norm": 1.433174967765808,
|
28 |
+
"learning_rate": 1.6844469399213926e-05,
|
29 |
+
"loss": 7.0853,
|
30 |
+
"step": 300
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.11228070175438597,
|
34 |
+
"grad_norm": 1.4522157907485962,
|
35 |
+
"learning_rate": 2.2459292532285233e-05,
|
36 |
+
"loss": 6.6702,
|
37 |
+
"step": 400
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.14035087719298245,
|
41 |
+
"grad_norm": 1.322840929031372,
|
42 |
+
"learning_rate": 2.8074115665356544e-05,
|
43 |
+
"loss": 6.4455,
|
44 |
+
"step": 500
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.14035087719298245,
|
48 |
+
"eval_accuracy": 0.17660504282313108,
|
49 |
+
"eval_bleu": 0.02573169351336114,
|
50 |
+
"eval_loss": 6.331261157989502,
|
51 |
+
"eval_perplexity": 561.8647474275982,
|
52 |
+
"eval_runtime": 20.1474,
|
53 |
+
"eval_samples_per_second": 56.633,
|
54 |
+
"eval_steps_per_second": 3.574,
|
55 |
+
"step": 500
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.16842105263157894,
|
59 |
+
"grad_norm": 1.5128698348999023,
|
60 |
+
"learning_rate": 3.368893879842785e-05,
|
61 |
+
"loss": 6.2694,
|
62 |
+
"step": 600
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.19649122807017544,
|
66 |
+
"grad_norm": 1.4778157472610474,
|
67 |
+
"learning_rate": 3.930376193149916e-05,
|
68 |
+
"loss": 6.1217,
|
69 |
+
"step": 700
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.22456140350877193,
|
73 |
+
"grad_norm": 1.1647950410842896,
|
74 |
+
"learning_rate": 4.4918585064570466e-05,
|
75 |
+
"loss": 5.9897,
|
76 |
+
"step": 800
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.25263157894736843,
|
80 |
+
"grad_norm": 1.3264423608779907,
|
81 |
+
"learning_rate": 5.053340819764178e-05,
|
82 |
+
"loss": 5.8659,
|
83 |
+
"step": 900
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 0.2807017543859649,
|
87 |
+
"grad_norm": 1.521269679069519,
|
88 |
+
"learning_rate": 5.614823133071309e-05,
|
89 |
+
"loss": 5.7254,
|
90 |
+
"step": 1000
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.2807017543859649,
|
94 |
+
"eval_accuracy": 0.2136290386834618,
|
95 |
+
"eval_bleu": 0.045427591918014404,
|
96 |
+
"eval_loss": 5.623491287231445,
|
97 |
+
"eval_perplexity": 276.85427569402634,
|
98 |
+
"eval_runtime": 20.1737,
|
99 |
+
"eval_samples_per_second": 56.559,
|
100 |
+
"eval_steps_per_second": 3.569,
|
101 |
+
"step": 1000
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.3087719298245614,
|
105 |
+
"grad_norm": 1.1612671613693237,
|
106 |
+
"learning_rate": 6.176305446378439e-05,
|
107 |
+
"loss": 5.5759,
|
108 |
+
"step": 1100
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.3368421052631579,
|
112 |
+
"grad_norm": 1.1074801683425903,
|
113 |
+
"learning_rate": 6.73778775968557e-05,
|
114 |
+
"loss": 5.4609,
|
115 |
+
"step": 1200
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.3649122807017544,
|
119 |
+
"grad_norm": 1.0632935762405396,
|
120 |
+
"learning_rate": 7.299270072992701e-05,
|
121 |
+
"loss": 5.3257,
|
122 |
+
"step": 1300
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.3929824561403509,
|
126 |
+
"grad_norm": 1.1046158075332642,
|
127 |
+
"learning_rate": 7.860752386299832e-05,
|
128 |
+
"loss": 5.1946,
|
129 |
+
"step": 1400
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.42105263157894735,
|
133 |
+
"grad_norm": 1.1495596170425415,
|
134 |
+
"learning_rate": 8.422234699606962e-05,
|
135 |
+
"loss": 5.1084,
|
136 |
+
"step": 1500
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.42105263157894735,
|
140 |
+
"eval_accuracy": 0.2575530545053601,
|
141 |
+
"eval_bleu": 0.06490299322624599,
|
142 |
+
"eval_loss": 4.982165813446045,
|
143 |
+
"eval_perplexity": 145.78979346372705,
|
144 |
+
"eval_runtime": 20.1855,
|
145 |
+
"eval_samples_per_second": 56.526,
|
146 |
+
"eval_steps_per_second": 3.567,
|
147 |
+
"step": 1500
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.44912280701754387,
|
151 |
+
"grad_norm": 0.9580332040786743,
|
152 |
+
"learning_rate": 8.983717012914093e-05,
|
153 |
+
"loss": 4.9932,
|
154 |
+
"step": 1600
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.47719298245614034,
|
158 |
+
"grad_norm": 0.9515564441680908,
|
159 |
+
"learning_rate": 9.545199326221224e-05,
|
160 |
+
"loss": 4.8819,
|
161 |
+
"step": 1700
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.5052631578947369,
|
165 |
+
"grad_norm": 0.9855053424835205,
|
166 |
+
"learning_rate": 9.98814648449685e-05,
|
167 |
+
"loss": 4.7868,
|
168 |
+
"step": 1800
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 0.5333333333333333,
|
172 |
+
"grad_norm": 1.0349925756454468,
|
173 |
+
"learning_rate": 9.925759560796058e-05,
|
174 |
+
"loss": 4.6832,
|
175 |
+
"step": 1900
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.5614035087719298,
|
179 |
+
"grad_norm": 1.0200501680374146,
|
180 |
+
"learning_rate": 9.863372637095265e-05,
|
181 |
+
"loss": 4.5994,
|
182 |
+
"step": 2000
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.5614035087719298,
|
186 |
+
"eval_accuracy": 0.29288759924026103,
|
187 |
+
"eval_bleu": 0.07406906637840037,
|
188 |
+
"eval_loss": 4.5052409172058105,
|
189 |
+
"eval_perplexity": 90.49014205518364,
|
190 |
+
"eval_runtime": 19.5875,
|
191 |
+
"eval_samples_per_second": 58.251,
|
192 |
+
"eval_steps_per_second": 3.676,
|
193 |
+
"step": 2000
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.5894736842105263,
|
197 |
+
"grad_norm": 0.9353361129760742,
|
198 |
+
"learning_rate": 9.800985713394473e-05,
|
199 |
+
"loss": 4.5176,
|
200 |
+
"step": 2100
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.6175438596491228,
|
204 |
+
"grad_norm": 0.9589385390281677,
|
205 |
+
"learning_rate": 9.73859878969368e-05,
|
206 |
+
"loss": 4.4355,
|
207 |
+
"step": 2200
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.6456140350877193,
|
211 |
+
"grad_norm": 1.0331965684890747,
|
212 |
+
"learning_rate": 9.676211865992888e-05,
|
213 |
+
"loss": 4.3647,
|
214 |
+
"step": 2300
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 0.6736842105263158,
|
218 |
+
"grad_norm": 0.9204744100570679,
|
219 |
+
"learning_rate": 9.613824942292095e-05,
|
220 |
+
"loss": 4.2935,
|
221 |
+
"step": 2400
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.7017543859649122,
|
225 |
+
"grad_norm": 0.9139348268508911,
|
226 |
+
"learning_rate": 9.551438018591303e-05,
|
227 |
+
"loss": 4.2338,
|
228 |
+
"step": 2500
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.7017543859649122,
|
232 |
+
"eval_accuracy": 0.32728917628977,
|
233 |
+
"eval_bleu": 0.09369678160356684,
|
234 |
+
"eval_loss": 4.137840747833252,
|
235 |
+
"eval_perplexity": 62.66736062058415,
|
236 |
+
"eval_runtime": 20.1595,
|
237 |
+
"eval_samples_per_second": 56.598,
|
238 |
+
"eval_steps_per_second": 3.572,
|
239 |
+
"step": 2500
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.7298245614035088,
|
243 |
+
"grad_norm": 0.9106621146202087,
|
244 |
+
"learning_rate": 9.489051094890511e-05,
|
245 |
+
"loss": 4.1694,
|
246 |
+
"step": 2600
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 0.7578947368421053,
|
250 |
+
"grad_norm": 0.9036598801612854,
|
251 |
+
"learning_rate": 9.426664171189718e-05,
|
252 |
+
"loss": 4.1386,
|
253 |
+
"step": 2700
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 0.7859649122807018,
|
257 |
+
"grad_norm": 0.8367689847946167,
|
258 |
+
"learning_rate": 9.364277247488927e-05,
|
259 |
+
"loss": 4.0731,
|
260 |
+
"step": 2800
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.8140350877192982,
|
264 |
+
"grad_norm": 0.9330971837043762,
|
265 |
+
"learning_rate": 9.301890323788135e-05,
|
266 |
+
"loss": 4.0342,
|
267 |
+
"step": 2900
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.8421052631578947,
|
271 |
+
"grad_norm": 0.847179114818573,
|
272 |
+
"learning_rate": 9.239503400087343e-05,
|
273 |
+
"loss": 3.9975,
|
274 |
+
"step": 3000
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 0.8421052631578947,
|
278 |
+
"eval_accuracy": 0.3465208187155545,
|
279 |
+
"eval_bleu": 0.10305263495616372,
|
280 |
+
"eval_loss": 3.928612470626831,
|
281 |
+
"eval_perplexity": 50.83639172374704,
|
282 |
+
"eval_runtime": 20.1917,
|
283 |
+
"eval_samples_per_second": 56.508,
|
284 |
+
"eval_steps_per_second": 3.566,
|
285 |
+
"step": 3000
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.8701754385964913,
|
289 |
+
"grad_norm": 0.8944078087806702,
|
290 |
+
"learning_rate": 9.17711647638655e-05,
|
291 |
+
"loss": 3.9805,
|
292 |
+
"step": 3100
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 0.8982456140350877,
|
296 |
+
"grad_norm": 0.8461546301841736,
|
297 |
+
"learning_rate": 9.114729552685758e-05,
|
298 |
+
"loss": 3.9468,
|
299 |
+
"step": 3200
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.9263157894736842,
|
303 |
+
"grad_norm": 0.8034185767173767,
|
304 |
+
"learning_rate": 9.052342628984965e-05,
|
305 |
+
"loss": 3.9049,
|
306 |
+
"step": 3300
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 0.9543859649122807,
|
310 |
+
"grad_norm": 0.8450652360916138,
|
311 |
+
"learning_rate": 8.989955705284174e-05,
|
312 |
+
"loss": 3.8727,
|
313 |
+
"step": 3400
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 0.9824561403508771,
|
317 |
+
"grad_norm": 0.7972449064254761,
|
318 |
+
"learning_rate": 8.92756878158338e-05,
|
319 |
+
"loss": 3.8648,
|
320 |
+
"step": 3500
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.9824561403508771,
|
324 |
+
"eval_accuracy": 0.35825016727450926,
|
325 |
+
"eval_bleu": 0.11656022916295831,
|
326 |
+
"eval_loss": 3.7925570011138916,
|
327 |
+
"eval_perplexity": 44.36970874398872,
|
328 |
+
"eval_runtime": 20.1635,
|
329 |
+
"eval_samples_per_second": 56.587,
|
330 |
+
"eval_steps_per_second": 3.571,
|
331 |
+
"step": 3500
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 1.0103859649122806,
|
335 |
+
"grad_norm": 0.766300618648529,
|
336 |
+
"learning_rate": 8.865181857882589e-05,
|
337 |
+
"loss": 3.8193,
|
338 |
+
"step": 3600
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 1.0384561403508772,
|
342 |
+
"grad_norm": 0.8034301996231079,
|
343 |
+
"learning_rate": 8.802794934181796e-05,
|
344 |
+
"loss": 3.7801,
|
345 |
+
"step": 3700
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.0665263157894738,
|
349 |
+
"grad_norm": 0.8166210651397705,
|
350 |
+
"learning_rate": 8.740408010481004e-05,
|
351 |
+
"loss": 3.7505,
|
352 |
+
"step": 3800
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 1.0945964912280701,
|
356 |
+
"grad_norm": 0.7962071895599365,
|
357 |
+
"learning_rate": 8.678021086780212e-05,
|
358 |
+
"loss": 3.7398,
|
359 |
+
"step": 3900
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 1.1226666666666667,
|
363 |
+
"grad_norm": 0.7868255972862244,
|
364 |
+
"learning_rate": 8.615634163079419e-05,
|
365 |
+
"loss": 3.7164,
|
366 |
+
"step": 4000
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 1.1226666666666667,
|
370 |
+
"eval_accuracy": 0.3667368320049895,
|
371 |
+
"eval_bleu": 0.1225879386890452,
|
372 |
+
"eval_loss": 3.6986546516418457,
|
373 |
+
"eval_perplexity": 40.39292523319135,
|
374 |
+
"eval_runtime": 20.1969,
|
375 |
+
"eval_samples_per_second": 56.494,
|
376 |
+
"eval_steps_per_second": 3.565,
|
377 |
+
"step": 4000
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 1.150736842105263,
|
381 |
+
"grad_norm": 0.7974035739898682,
|
382 |
+
"learning_rate": 8.553247239378627e-05,
|
383 |
+
"loss": 3.7099,
|
384 |
+
"step": 4100
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 1.1788070175438596,
|
388 |
+
"grad_norm": 0.7970170974731445,
|
389 |
+
"learning_rate": 8.490860315677834e-05,
|
390 |
+
"loss": 3.6871,
|
391 |
+
"step": 4200
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 1.2068771929824562,
|
395 |
+
"grad_norm": 0.7822019457817078,
|
396 |
+
"learning_rate": 8.428473391977042e-05,
|
397 |
+
"loss": 3.6628,
|
398 |
+
"step": 4300
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 1.2349473684210526,
|
402 |
+
"grad_norm": 0.7597511410713196,
|
403 |
+
"learning_rate": 8.36608646827625e-05,
|
404 |
+
"loss": 3.6631,
|
405 |
+
"step": 4400
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 1.2630175438596491,
|
409 |
+
"grad_norm": 0.7736372947692871,
|
410 |
+
"learning_rate": 8.303699544575458e-05,
|
411 |
+
"loss": 3.6639,
|
412 |
+
"step": 4500
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"epoch": 1.2630175438596491,
|
416 |
+
"eval_accuracy": 0.37342095861787133,
|
417 |
+
"eval_bleu": 0.12824268044271067,
|
418 |
+
"eval_loss": 3.622089147567749,
|
419 |
+
"eval_perplexity": 37.415653048434656,
|
420 |
+
"eval_runtime": 20.1594,
|
421 |
+
"eval_samples_per_second": 56.599,
|
422 |
+
"eval_steps_per_second": 3.572,
|
423 |
+
"step": 4500
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 1.2910877192982455,
|
427 |
+
"grad_norm": 0.7472370266914368,
|
428 |
+
"learning_rate": 8.241312620874664e-05,
|
429 |
+
"loss": 3.6404,
|
430 |
+
"step": 4600
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 1.319157894736842,
|
434 |
+
"grad_norm": 0.771800696849823,
|
435 |
+
"learning_rate": 8.178925697173873e-05,
|
436 |
+
"loss": 3.6235,
|
437 |
+
"step": 4700
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 1.3472280701754387,
|
441 |
+
"grad_norm": 0.7624268531799316,
|
442 |
+
"learning_rate": 8.11653877347308e-05,
|
443 |
+
"loss": 3.6123,
|
444 |
+
"step": 4800
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 1.375298245614035,
|
448 |
+
"grad_norm": 0.7671138644218445,
|
449 |
+
"learning_rate": 8.054151849772288e-05,
|
450 |
+
"loss": 3.592,
|
451 |
+
"step": 4900
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 1.4033684210526316,
|
455 |
+
"grad_norm": 0.7753613591194153,
|
456 |
+
"learning_rate": 7.991764926071496e-05,
|
457 |
+
"loss": 3.582,
|
458 |
+
"step": 5000
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 1.4033684210526316,
|
462 |
+
"eval_accuracy": 0.3795687787375893,
|
463 |
+
"eval_bleu": 0.1276585909940598,
|
464 |
+
"eval_loss": 3.5575244426727295,
|
465 |
+
"eval_perplexity": 35.07625629269647,
|
466 |
+
"eval_runtime": 20.1451,
|
467 |
+
"eval_samples_per_second": 56.639,
|
468 |
+
"eval_steps_per_second": 3.574,
|
469 |
+
"step": 5000
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 1.431438596491228,
|
473 |
+
"grad_norm": 0.7279810309410095,
|
474 |
+
"learning_rate": 7.929378002370703e-05,
|
475 |
+
"loss": 3.5846,
|
476 |
+
"step": 5100
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 1.4595087719298245,
|
480 |
+
"grad_norm": 0.728085458278656,
|
481 |
+
"learning_rate": 7.866991078669911e-05,
|
482 |
+
"loss": 3.5677,
|
483 |
+
"step": 5200
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 1.4875789473684211,
|
487 |
+
"grad_norm": 0.7683869004249573,
|
488 |
+
"learning_rate": 7.804604154969118e-05,
|
489 |
+
"loss": 3.5452,
|
490 |
+
"step": 5300
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 1.5156491228070177,
|
494 |
+
"grad_norm": 0.7563459277153015,
|
495 |
+
"learning_rate": 7.742217231268327e-05,
|
496 |
+
"loss": 3.5557,
|
497 |
+
"step": 5400
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 1.543719298245614,
|
501 |
+
"grad_norm": 0.7477959394454956,
|
502 |
+
"learning_rate": 7.679830307567533e-05,
|
503 |
+
"loss": 3.5315,
|
504 |
+
"step": 5500
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 1.543719298245614,
|
508 |
+
"eval_accuracy": 0.38395261312340273,
|
509 |
+
"eval_bleu": 0.13124123866011556,
|
510 |
+
"eval_loss": 3.5063869953155518,
|
511 |
+
"eval_perplexity": 33.32763708661619,
|
512 |
+
"eval_runtime": 20.2862,
|
513 |
+
"eval_samples_per_second": 56.245,
|
514 |
+
"eval_steps_per_second": 3.549,
|
515 |
+
"step": 5500
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 1.5717894736842104,
|
519 |
+
"grad_norm": 0.732016921043396,
|
520 |
+
"learning_rate": 7.617443383866742e-05,
|
521 |
+
"loss": 3.5185,
|
522 |
+
"step": 5600
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 1.599859649122807,
|
526 |
+
"grad_norm": 0.7203788757324219,
|
527 |
+
"learning_rate": 7.555056460165949e-05,
|
528 |
+
"loss": 3.5216,
|
529 |
+
"step": 5700
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 1.6279298245614036,
|
533 |
+
"grad_norm": 0.7561742663383484,
|
534 |
+
"learning_rate": 7.492669536465158e-05,
|
535 |
+
"loss": 3.5057,
|
536 |
+
"step": 5800
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 1.6560000000000001,
|
540 |
+
"grad_norm": 0.7377160787582397,
|
541 |
+
"learning_rate": 7.430282612764365e-05,
|
542 |
+
"loss": 3.5058,
|
543 |
+
"step": 5900
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 1.6840701754385965,
|
547 |
+
"grad_norm": 0.8002681136131287,
|
548 |
+
"learning_rate": 7.367895689063573e-05,
|
549 |
+
"loss": 3.5025,
|
550 |
+
"step": 6000
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 1.6840701754385965,
|
554 |
+
"eval_accuracy": 0.3880588703466202,
|
555 |
+
"eval_bleu": 0.13662311841214886,
|
556 |
+
"eval_loss": 3.4594311714172363,
|
557 |
+
"eval_perplexity": 31.798883255478383,
|
558 |
+
"eval_runtime": 20.2931,
|
559 |
+
"eval_samples_per_second": 56.226,
|
560 |
+
"eval_steps_per_second": 3.548,
|
561 |
+
"step": 6000
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 1.7121403508771929,
|
565 |
+
"grad_norm": 0.7451775074005127,
|
566 |
+
"learning_rate": 7.30550876536278e-05,
|
567 |
+
"loss": 3.4714,
|
568 |
+
"step": 6100
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"epoch": 1.7402105263157894,
|
572 |
+
"grad_norm": 0.7121933102607727,
|
573 |
+
"learning_rate": 7.243121841661989e-05,
|
574 |
+
"loss": 3.474,
|
575 |
+
"step": 6200
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 1.768280701754386,
|
579 |
+
"grad_norm": 0.7507015466690063,
|
580 |
+
"learning_rate": 7.180734917961195e-05,
|
581 |
+
"loss": 3.4577,
|
582 |
+
"step": 6300
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"epoch": 1.7963508771929826,
|
586 |
+
"grad_norm": 0.7061077356338501,
|
587 |
+
"learning_rate": 7.118347994260404e-05,
|
588 |
+
"loss": 3.463,
|
589 |
+
"step": 6400
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 1.824421052631579,
|
593 |
+
"grad_norm": 0.7301498055458069,
|
594 |
+
"learning_rate": 7.055961070559612e-05,
|
595 |
+
"loss": 3.4462,
|
596 |
+
"step": 6500
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 1.824421052631579,
|
600 |
+
"eval_accuracy": 0.3919063982392698,
|
601 |
+
"eval_bleu": 0.13096345408557636,
|
602 |
+
"eval_loss": 3.420844554901123,
|
603 |
+
"eval_perplexity": 30.5952434755694,
|
604 |
+
"eval_runtime": 20.2154,
|
605 |
+
"eval_samples_per_second": 56.442,
|
606 |
+
"eval_steps_per_second": 3.562,
|
607 |
+
"step": 6500
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 1.8524912280701753,
|
611 |
+
"grad_norm": 0.713631272315979,
|
612 |
+
"learning_rate": 6.993574146858819e-05,
|
613 |
+
"loss": 3.4245,
|
614 |
+
"step": 6600
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 1.8805614035087719,
|
618 |
+
"grad_norm": 0.7331680059432983,
|
619 |
+
"learning_rate": 6.931187223158027e-05,
|
620 |
+
"loss": 3.4289,
|
621 |
+
"step": 6700
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 1.9086315789473685,
|
625 |
+
"grad_norm": 0.7402526140213013,
|
626 |
+
"learning_rate": 6.868800299457234e-05,
|
627 |
+
"loss": 3.434,
|
628 |
+
"step": 6800
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"epoch": 1.936701754385965,
|
632 |
+
"grad_norm": 0.7350389361381531,
|
633 |
+
"learning_rate": 6.806413375756442e-05,
|
634 |
+
"loss": 3.413,
|
635 |
+
"step": 6900
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 1.9647719298245614,
|
639 |
+
"grad_norm": 0.7257172465324402,
|
640 |
+
"learning_rate": 6.744026452055649e-05,
|
641 |
+
"loss": 3.4167,
|
642 |
+
"step": 7000
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"epoch": 1.9647719298245614,
|
646 |
+
"eval_accuracy": 0.39561171067207085,
|
647 |
+
"eval_bleu": 0.1355256129038967,
|
648 |
+
"eval_loss": 3.3863015174865723,
|
649 |
+
"eval_perplexity": 29.556435911658944,
|
650 |
+
"eval_runtime": 20.2056,
|
651 |
+
"eval_samples_per_second": 56.469,
|
652 |
+
"eval_steps_per_second": 3.563,
|
653 |
+
"step": 7000
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 1.9928421052631577,
|
657 |
+
"grad_norm": 0.7187970876693726,
|
658 |
+
"learning_rate": 6.681639528354857e-05,
|
659 |
+
"loss": 3.4086,
|
660 |
+
"step": 7100
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 2.020771929824561,
|
664 |
+
"grad_norm": 0.7202402353286743,
|
665 |
+
"learning_rate": 6.619252604654064e-05,
|
666 |
+
"loss": 3.3372,
|
667 |
+
"step": 7200
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 2.048842105263158,
|
671 |
+
"grad_norm": 0.7403327822685242,
|
672 |
+
"learning_rate": 6.556865680953273e-05,
|
673 |
+
"loss": 3.3079,
|
674 |
+
"step": 7300
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 2.0769122807017544,
|
678 |
+
"grad_norm": 0.7321439385414124,
|
679 |
+
"learning_rate": 6.49447875725248e-05,
|
680 |
+
"loss": 3.3128,
|
681 |
+
"step": 7400
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 2.104982456140351,
|
685 |
+
"grad_norm": 0.7240020632743835,
|
686 |
+
"learning_rate": 6.432091833551688e-05,
|
687 |
+
"loss": 3.2967,
|
688 |
+
"step": 7500
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 2.104982456140351,
|
692 |
+
"eval_accuracy": 0.39890408423952856,
|
693 |
+
"eval_bleu": 0.1316612565684532,
|
694 |
+
"eval_loss": 3.3547873497009277,
|
695 |
+
"eval_perplexity": 28.639513342041703,
|
696 |
+
"eval_runtime": 20.2147,
|
697 |
+
"eval_samples_per_second": 56.444,
|
698 |
+
"eval_steps_per_second": 3.562,
|
699 |
+
"step": 7500
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 2.1330526315789475,
|
703 |
+
"grad_norm": 0.7483673095703125,
|
704 |
+
"learning_rate": 6.369704909850896e-05,
|
705 |
+
"loss": 3.2857,
|
706 |
+
"step": 7600
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 2.1611228070175437,
|
710 |
+
"grad_norm": 0.7482850551605225,
|
711 |
+
"learning_rate": 6.307317986150103e-05,
|
712 |
+
"loss": 3.3038,
|
713 |
+
"step": 7700
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 2.1891929824561402,
|
717 |
+
"grad_norm": 0.7295832633972168,
|
718 |
+
"learning_rate": 6.244931062449311e-05,
|
719 |
+
"loss": 3.284,
|
720 |
+
"step": 7800
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 2.217263157894737,
|
724 |
+
"grad_norm": 0.7610414028167725,
|
725 |
+
"learning_rate": 6.182544138748518e-05,
|
726 |
+
"loss": 3.2862,
|
727 |
+
"step": 7900
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 2.2453333333333334,
|
731 |
+
"grad_norm": 0.7399555444717407,
|
732 |
+
"learning_rate": 6.120157215047726e-05,
|
733 |
+
"loss": 3.2909,
|
734 |
+
"step": 8000
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 2.2453333333333334,
|
738 |
+
"eval_accuracy": 0.4014682461149906,
|
739 |
+
"eval_bleu": 0.13811168690281525,
|
740 |
+
"eval_loss": 3.329040050506592,
|
741 |
+
"eval_perplexity": 27.911535174787044,
|
742 |
+
"eval_runtime": 20.1568,
|
743 |
+
"eval_samples_per_second": 56.606,
|
744 |
+
"eval_steps_per_second": 3.572,
|
745 |
+
"step": 8000
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 2.27340350877193,
|
749 |
+
"grad_norm": 0.7306208610534668,
|
750 |
+
"learning_rate": 6.057770291346934e-05,
|
751 |
+
"loss": 3.2853,
|
752 |
+
"step": 8100
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 2.301473684210526,
|
756 |
+
"grad_norm": 0.7453253269195557,
|
757 |
+
"learning_rate": 5.9953833676461415e-05,
|
758 |
+
"loss": 3.2744,
|
759 |
+
"step": 8200
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 2.3295438596491227,
|
763 |
+
"grad_norm": 0.7369946837425232,
|
764 |
+
"learning_rate": 5.932996443945349e-05,
|
765 |
+
"loss": 3.2604,
|
766 |
+
"step": 8300
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 2.3576140350877193,
|
770 |
+
"grad_norm": 0.7455064654350281,
|
771 |
+
"learning_rate": 5.870609520244557e-05,
|
772 |
+
"loss": 3.2622,
|
773 |
+
"step": 8400
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 2.385684210526316,
|
777 |
+
"grad_norm": 0.7593878507614136,
|
778 |
+
"learning_rate": 5.808222596543764e-05,
|
779 |
+
"loss": 3.2593,
|
780 |
+
"step": 8500
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 2.385684210526316,
|
784 |
+
"eval_accuracy": 0.40385506702546087,
|
785 |
+
"eval_bleu": 0.14220030200690656,
|
786 |
+
"eval_loss": 3.3044025897979736,
|
787 |
+
"eval_perplexity": 27.232267893585384,
|
788 |
+
"eval_runtime": 20.1746,
|
789 |
+
"eval_samples_per_second": 56.556,
|
790 |
+
"eval_steps_per_second": 3.569,
|
791 |
+
"step": 8500
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 2.4137543859649124,
|
795 |
+
"grad_norm": 0.7376691102981567,
|
796 |
+
"learning_rate": 5.745835672842972e-05,
|
797 |
+
"loss": 3.2582,
|
798 |
+
"step": 8600
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"epoch": 2.441824561403509,
|
802 |
+
"grad_norm": 0.7452288269996643,
|
803 |
+
"learning_rate": 5.683448749142181e-05,
|
804 |
+
"loss": 3.2491,
|
805 |
+
"step": 8700
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"epoch": 2.469894736842105,
|
809 |
+
"grad_norm": 0.749320924282074,
|
810 |
+
"learning_rate": 5.6210618254413884e-05,
|
811 |
+
"loss": 3.24,
|
812 |
+
"step": 8800
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 2.4979649122807017,
|
816 |
+
"grad_norm": 0.7482838034629822,
|
817 |
+
"learning_rate": 5.558674901740596e-05,
|
818 |
+
"loss": 3.2374,
|
819 |
+
"step": 8900
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 2.5260350877192983,
|
823 |
+
"grad_norm": 0.7401648163795471,
|
824 |
+
"learning_rate": 5.4962879780398035e-05,
|
825 |
+
"loss": 3.2408,
|
826 |
+
"step": 9000
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 2.5260350877192983,
|
830 |
+
"eval_accuracy": 0.4061330845419506,
|
831 |
+
"eval_bleu": 0.14119139857697727,
|
832 |
+
"eval_loss": 3.282592296600342,
|
833 |
+
"eval_perplexity": 26.644754356923094,
|
834 |
+
"eval_runtime": 20.1938,
|
835 |
+
"eval_samples_per_second": 56.503,
|
836 |
+
"eval_steps_per_second": 3.565,
|
837 |
+
"step": 9000
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 2.554105263157895,
|
841 |
+
"grad_norm": 0.7236805558204651,
|
842 |
+
"learning_rate": 5.433901054339011e-05,
|
843 |
+
"loss": 3.2434,
|
844 |
+
"step": 9100
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 2.582175438596491,
|
848 |
+
"grad_norm": 0.7386437058448792,
|
849 |
+
"learning_rate": 5.371514130638219e-05,
|
850 |
+
"loss": 3.2445,
|
851 |
+
"step": 9200
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 2.6102456140350876,
|
855 |
+
"grad_norm": 0.7296267747879028,
|
856 |
+
"learning_rate": 5.309127206937426e-05,
|
857 |
+
"loss": 3.2257,
|
858 |
+
"step": 9300
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 2.638315789473684,
|
862 |
+
"grad_norm": 0.7237492203712463,
|
863 |
+
"learning_rate": 5.246740283236634e-05,
|
864 |
+
"loss": 3.2336,
|
865 |
+
"step": 9400
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 2.6663859649122807,
|
869 |
+
"grad_norm": 0.7474483847618103,
|
870 |
+
"learning_rate": 5.1843533595358414e-05,
|
871 |
+
"loss": 3.2278,
|
872 |
+
"step": 9500
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 2.6663859649122807,
|
876 |
+
"eval_accuracy": 0.40903479395464354,
|
877 |
+
"eval_bleu": 0.14356756322892422,
|
878 |
+
"eval_loss": 3.2591938972473145,
|
879 |
+
"eval_perplexity": 26.028547000163957,
|
880 |
+
"eval_runtime": 20.1915,
|
881 |
+
"eval_samples_per_second": 56.509,
|
882 |
+
"eval_steps_per_second": 3.566,
|
883 |
+
"step": 9500
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 2.6944561403508773,
|
887 |
+
"grad_norm": 0.7365037798881531,
|
888 |
+
"learning_rate": 5.12196643583505e-05,
|
889 |
+
"loss": 3.2235,
|
890 |
+
"step": 9600
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 2.722526315789474,
|
894 |
+
"grad_norm": 0.7330195307731628,
|
895 |
+
"learning_rate": 5.059579512134257e-05,
|
896 |
+
"loss": 3.2179,
|
897 |
+
"step": 9700
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 2.75059649122807,
|
901 |
+
"grad_norm": 0.7449477314949036,
|
902 |
+
"learning_rate": 4.997192588433465e-05,
|
903 |
+
"loss": 3.2178,
|
904 |
+
"step": 9800
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 2.7786666666666666,
|
908 |
+
"grad_norm": 0.7243569493293762,
|
909 |
+
"learning_rate": 4.9348056647326725e-05,
|
910 |
+
"loss": 3.2126,
|
911 |
+
"step": 9900
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 2.806736842105263,
|
915 |
+
"grad_norm": 0.7603092789649963,
|
916 |
+
"learning_rate": 4.87241874103188e-05,
|
917 |
+
"loss": 3.2172,
|
918 |
+
"step": 10000
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"epoch": 2.806736842105263,
|
922 |
+
"eval_accuracy": 0.4104792232637077,
|
923 |
+
"eval_bleu": 0.1411554473599086,
|
924 |
+
"eval_loss": 3.2415478229522705,
|
925 |
+
"eval_perplexity": 25.573274029997943,
|
926 |
+
"eval_runtime": 19.9283,
|
927 |
+
"eval_samples_per_second": 57.255,
|
928 |
+
"eval_steps_per_second": 3.613,
|
929 |
+
"step": 10000
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 2.8348070175438598,
|
933 |
+
"grad_norm": 0.7319552302360535,
|
934 |
+
"learning_rate": 4.8100318173310876e-05,
|
935 |
+
"loss": 3.2138,
|
936 |
+
"step": 10100
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 2.862877192982456,
|
940 |
+
"grad_norm": 0.7321156859397888,
|
941 |
+
"learning_rate": 4.747644893630295e-05,
|
942 |
+
"loss": 3.2114,
|
943 |
+
"step": 10200
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 2.8909473684210525,
|
947 |
+
"grad_norm": 0.7428148984909058,
|
948 |
+
"learning_rate": 4.685257969929503e-05,
|
949 |
+
"loss": 3.1985,
|
950 |
+
"step": 10300
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 2.919017543859649,
|
954 |
+
"grad_norm": 0.7498809099197388,
|
955 |
+
"learning_rate": 4.6228710462287104e-05,
|
956 |
+
"loss": 3.1861,
|
957 |
+
"step": 10400
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 2.9470877192982456,
|
961 |
+
"grad_norm": 0.7468050718307495,
|
962 |
+
"learning_rate": 4.560484122527918e-05,
|
963 |
+
"loss": 3.2145,
|
964 |
+
"step": 10500
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 2.9470877192982456,
|
968 |
+
"eval_accuracy": 0.41254477431006226,
|
969 |
+
"eval_bleu": 0.14022835224132563,
|
970 |
+
"eval_loss": 3.222651243209839,
|
971 |
+
"eval_perplexity": 25.094563855273414,
|
972 |
+
"eval_runtime": 20.1985,
|
973 |
+
"eval_samples_per_second": 56.489,
|
974 |
+
"eval_steps_per_second": 3.565,
|
975 |
+
"step": 10500
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 2.9751578947368422,
|
979 |
+
"grad_norm": 0.7379462122917175,
|
980 |
+
"learning_rate": 4.498097198827126e-05,
|
981 |
+
"loss": 3.1799,
|
982 |
+
"step": 10600
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 3.0030877192982457,
|
986 |
+
"grad_norm": 0.7374199032783508,
|
987 |
+
"learning_rate": 4.435710275126334e-05,
|
988 |
+
"loss": 3.1681,
|
989 |
+
"step": 10700
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 3.0311578947368423,
|
993 |
+
"grad_norm": 0.7500795722007751,
|
994 |
+
"learning_rate": 4.3733233514255414e-05,
|
995 |
+
"loss": 3.096,
|
996 |
+
"step": 10800
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 3.0592280701754384,
|
1000 |
+
"grad_norm": 0.7644433975219727,
|
1001 |
+
"learning_rate": 4.3109364277247496e-05,
|
1002 |
+
"loss": 3.0842,
|
1003 |
+
"step": 10900
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 3.087298245614035,
|
1007 |
+
"grad_norm": 0.7695332169532776,
|
1008 |
+
"learning_rate": 4.248549504023957e-05,
|
1009 |
+
"loss": 3.0749,
|
1010 |
+
"step": 11000
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 3.087298245614035,
|
1014 |
+
"eval_accuracy": 0.41432503771708207,
|
1015 |
+
"eval_bleu": 0.1413248900872156,
|
1016 |
+
"eval_loss": 3.209906578063965,
|
1017 |
+
"eval_perplexity": 24.776771422507743,
|
1018 |
+
"eval_runtime": 20.1941,
|
1019 |
+
"eval_samples_per_second": 56.502,
|
1020 |
+
"eval_steps_per_second": 3.565,
|
1021 |
+
"step": 11000
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 3.1153684210526316,
|
1025 |
+
"grad_norm": 0.7983810901641846,
|
1026 |
+
"learning_rate": 4.186162580323165e-05,
|
1027 |
+
"loss": 3.0886,
|
1028 |
+
"step": 11100
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 3.143438596491228,
|
1032 |
+
"grad_norm": 0.7757524847984314,
|
1033 |
+
"learning_rate": 4.1237756566223724e-05,
|
1034 |
+
"loss": 3.0873,
|
1035 |
+
"step": 11200
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 3.1715087719298247,
|
1039 |
+
"grad_norm": 0.8084014654159546,
|
1040 |
+
"learning_rate": 4.06138873292158e-05,
|
1041 |
+
"loss": 3.0882,
|
1042 |
+
"step": 11300
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"epoch": 3.199578947368421,
|
1046 |
+
"grad_norm": 0.7784711718559265,
|
1047 |
+
"learning_rate": 3.9990018092207875e-05,
|
1048 |
+
"loss": 3.0807,
|
1049 |
+
"step": 11400
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"epoch": 3.2276491228070174,
|
1053 |
+
"grad_norm": 0.7808659076690674,
|
1054 |
+
"learning_rate": 3.936614885519995e-05,
|
1055 |
+
"loss": 3.0777,
|
1056 |
+
"step": 11500
|
1057 |
+
},
|
1058 |
+
{
|
1059 |
+
"epoch": 3.2276491228070174,
|
1060 |
+
"eval_accuracy": 0.4159836469355567,
|
1061 |
+
"eval_bleu": 0.14196972146127593,
|
1062 |
+
"eval_loss": 3.1977927684783936,
|
1063 |
+
"eval_perplexity": 24.478440938871064,
|
1064 |
+
"eval_runtime": 20.2549,
|
1065 |
+
"eval_samples_per_second": 56.332,
|
1066 |
+
"eval_steps_per_second": 3.555,
|
1067 |
+
"step": 11500
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 3.255719298245614,
|
1071 |
+
"grad_norm": 0.7880111336708069,
|
1072 |
+
"learning_rate": 3.874227961819203e-05,
|
1073 |
+
"loss": 3.0907,
|
1074 |
+
"step": 11600
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 3.2837894736842106,
|
1078 |
+
"grad_norm": 0.7764289975166321,
|
1079 |
+
"learning_rate": 3.81184103811841e-05,
|
1080 |
+
"loss": 3.0829,
|
1081 |
+
"step": 11700
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 3.311859649122807,
|
1085 |
+
"grad_norm": 0.7774072885513306,
|
1086 |
+
"learning_rate": 3.749454114417618e-05,
|
1087 |
+
"loss": 3.084,
|
1088 |
+
"step": 11800
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 3.3399298245614037,
|
1092 |
+
"grad_norm": 0.7633748650550842,
|
1093 |
+
"learning_rate": 3.687067190716826e-05,
|
1094 |
+
"loss": 3.0832,
|
1095 |
+
"step": 11900
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 3.368,
|
1099 |
+
"grad_norm": 0.7821294069290161,
|
1100 |
+
"learning_rate": 3.624680267016034e-05,
|
1101 |
+
"loss": 3.0743,
|
1102 |
+
"step": 12000
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 3.368,
|
1106 |
+
"eval_accuracy": 0.41744863751592426,
|
1107 |
+
"eval_bleu": 0.1437616042304935,
|
1108 |
+
"eval_loss": 3.185511589050293,
|
1109 |
+
"eval_perplexity": 24.1796552890801,
|
1110 |
+
"eval_runtime": 20.1722,
|
1111 |
+
"eval_samples_per_second": 56.563,
|
1112 |
+
"eval_steps_per_second": 3.569,
|
1113 |
+
"step": 12000
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 3.3960701754385965,
|
1117 |
+
"grad_norm": 0.7699295878410339,
|
1118 |
+
"learning_rate": 3.562293343315241e-05,
|
1119 |
+
"loss": 3.0603,
|
1120 |
+
"step": 12100
|
1121 |
+
},
|
1122 |
+
{
|
1123 |
+
"epoch": 3.424140350877193,
|
1124 |
+
"grad_norm": 0.7893390655517578,
|
1125 |
+
"learning_rate": 3.499906419614449e-05,
|
1126 |
+
"loss": 3.064,
|
1127 |
+
"step": 12200
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"epoch": 3.4522105263157896,
|
1131 |
+
"grad_norm": 0.7758604884147644,
|
1132 |
+
"learning_rate": 3.4375194959136565e-05,
|
1133 |
+
"loss": 3.0791,
|
1134 |
+
"step": 12300
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 3.4802807017543858,
|
1138 |
+
"grad_norm": 0.7830843925476074,
|
1139 |
+
"learning_rate": 3.375132572212865e-05,
|
1140 |
+
"loss": 3.0691,
|
1141 |
+
"step": 12400
|
1142 |
+
},
|
1143 |
+
{
|
1144 |
+
"epoch": 3.5083508771929823,
|
1145 |
+
"grad_norm": 0.7860715389251709,
|
1146 |
+
"learning_rate": 3.312745648512072e-05,
|
1147 |
+
"loss": 3.0679,
|
1148 |
+
"step": 12500
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 3.5083508771929823,
|
1152 |
+
"eval_accuracy": 0.4182539539753076,
|
1153 |
+
"eval_bleu": 0.13973142885022957,
|
1154 |
+
"eval_loss": 3.1735119819641113,
|
1155 |
+
"eval_perplexity": 23.891242805090002,
|
1156 |
+
"eval_runtime": 20.2985,
|
1157 |
+
"eval_samples_per_second": 56.211,
|
1158 |
+
"eval_steps_per_second": 3.547,
|
1159 |
+
"step": 12500
|
1160 |
+
},
|
1161 |
+
{
|
1162 |
+
"epoch": 3.536421052631579,
|
1163 |
+
"grad_norm": 0.7781902551651001,
|
1164 |
+
"learning_rate": 3.25035872481128e-05,
|
1165 |
+
"loss": 3.0577,
|
1166 |
+
"step": 12600
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 3.5644912280701755,
|
1170 |
+
"grad_norm": 0.7784900665283203,
|
1171 |
+
"learning_rate": 3.1879718011104875e-05,
|
1172 |
+
"loss": 3.0775,
|
1173 |
+
"step": 12700
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 3.592561403508772,
|
1177 |
+
"grad_norm": 0.8009820580482483,
|
1178 |
+
"learning_rate": 3.125584877409695e-05,
|
1179 |
+
"loss": 3.0532,
|
1180 |
+
"step": 12800
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"epoch": 3.6206315789473686,
|
1184 |
+
"grad_norm": 0.7675787210464478,
|
1185 |
+
"learning_rate": 3.0631979537089026e-05,
|
1186 |
+
"loss": 3.0597,
|
1187 |
+
"step": 12900
|
1188 |
+
},
|
1189 |
+
{
|
1190 |
+
"epoch": 3.648701754385965,
|
1191 |
+
"grad_norm": 0.7848743796348572,
|
1192 |
+
"learning_rate": 3.0008110300081106e-05,
|
1193 |
+
"loss": 3.0635,
|
1194 |
+
"step": 13000
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 3.648701754385965,
|
1198 |
+
"eval_accuracy": 0.4199536857363891,
|
1199 |
+
"eval_bleu": 0.14234657853553717,
|
1200 |
+
"eval_loss": 3.1599371433258057,
|
1201 |
+
"eval_perplexity": 23.56911440636153,
|
1202 |
+
"eval_runtime": 20.1704,
|
1203 |
+
"eval_samples_per_second": 56.568,
|
1204 |
+
"eval_steps_per_second": 3.57,
|
1205 |
+
"step": 13000
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"epoch": 3.6767719298245614,
|
1209 |
+
"grad_norm": 0.7748121023178101,
|
1210 |
+
"learning_rate": 2.938424106307318e-05,
|
1211 |
+
"loss": 3.0489,
|
1212 |
+
"step": 13100
|
1213 |
+
},
|
1214 |
+
{
|
1215 |
+
"epoch": 3.704842105263158,
|
1216 |
+
"grad_norm": 0.7777696251869202,
|
1217 |
+
"learning_rate": 2.8760371826065257e-05,
|
1218 |
+
"loss": 3.0603,
|
1219 |
+
"step": 13200
|
1220 |
+
},
|
1221 |
+
{
|
1222 |
+
"epoch": 3.7329122807017545,
|
1223 |
+
"grad_norm": 0.7850595116615295,
|
1224 |
+
"learning_rate": 2.8136502589057333e-05,
|
1225 |
+
"loss": 3.0361,
|
1226 |
+
"step": 13300
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 3.7609824561403506,
|
1230 |
+
"grad_norm": 0.7980267405509949,
|
1231 |
+
"learning_rate": 2.7512633352049412e-05,
|
1232 |
+
"loss": 3.0565,
|
1233 |
+
"step": 13400
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 3.7890526315789472,
|
1237 |
+
"grad_norm": 0.8132106065750122,
|
1238 |
+
"learning_rate": 2.6888764115041488e-05,
|
1239 |
+
"loss": 3.0262,
|
1240 |
+
"step": 13500
|
1241 |
+
},
|
1242 |
+
{
|
1243 |
+
"epoch": 3.7890526315789472,
|
1244 |
+
"eval_accuracy": 0.4210717048635117,
|
1245 |
+
"eval_bleu": 0.14320922241168227,
|
1246 |
+
"eval_loss": 3.148859977722168,
|
1247 |
+
"eval_perplexity": 23.309476106050013,
|
1248 |
+
"eval_runtime": 20.2248,
|
1249 |
+
"eval_samples_per_second": 56.416,
|
1250 |
+
"eval_steps_per_second": 3.56,
|
1251 |
+
"step": 13500
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 3.817122807017544,
|
1255 |
+
"grad_norm": 0.8002068400382996,
|
1256 |
+
"learning_rate": 2.6264894878033564e-05,
|
1257 |
+
"loss": 3.0504,
|
1258 |
+
"step": 13600
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 3.8451929824561404,
|
1262 |
+
"grad_norm": 0.7945306301116943,
|
1263 |
+
"learning_rate": 2.564102564102564e-05,
|
1264 |
+
"loss": 3.0412,
|
1265 |
+
"step": 13700
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 3.873263157894737,
|
1269 |
+
"grad_norm": 0.7735077738761902,
|
1270 |
+
"learning_rate": 2.5017156404017715e-05,
|
1271 |
+
"loss": 3.0193,
|
1272 |
+
"step": 13800
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 3.9013333333333335,
|
1276 |
+
"grad_norm": 0.7823268175125122,
|
1277 |
+
"learning_rate": 2.4393287167009795e-05,
|
1278 |
+
"loss": 3.0408,
|
1279 |
+
"step": 13900
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 3.9294035087719297,
|
1283 |
+
"grad_norm": 0.7943819165229797,
|
1284 |
+
"learning_rate": 2.376941793000187e-05,
|
1285 |
+
"loss": 3.0382,
|
1286 |
+
"step": 14000
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 3.9294035087719297,
|
1290 |
+
"eval_accuracy": 0.4223199453755559,
|
1291 |
+
"eval_bleu": 0.1460635167412373,
|
1292 |
+
"eval_loss": 3.139704465866089,
|
1293 |
+
"eval_perplexity": 23.097039886291473,
|
1294 |
+
"eval_runtime": 20.2485,
|
1295 |
+
"eval_samples_per_second": 56.35,
|
1296 |
+
"eval_steps_per_second": 3.556,
|
1297 |
+
"step": 14000
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 3.9574736842105263,
|
1301 |
+
"grad_norm": 0.7909451723098755,
|
1302 |
+
"learning_rate": 2.314554869299395e-05,
|
1303 |
+
"loss": 3.032,
|
1304 |
+
"step": 14100
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 3.985543859649123,
|
1308 |
+
"grad_norm": 0.7830550670623779,
|
1309 |
+
"learning_rate": 2.2521679455986026e-05,
|
1310 |
+
"loss": 3.0383,
|
1311 |
+
"step": 14200
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 4.013473684210527,
|
1315 |
+
"grad_norm": 0.7939472794532776,
|
1316 |
+
"learning_rate": 2.1897810218978105e-05,
|
1317 |
+
"loss": 2.9744,
|
1318 |
+
"step": 14300
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 4.041543859649122,
|
1322 |
+
"grad_norm": 0.8031191229820251,
|
1323 |
+
"learning_rate": 2.127394098197018e-05,
|
1324 |
+
"loss": 2.9426,
|
1325 |
+
"step": 14400
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 4.069614035087719,
|
1329 |
+
"grad_norm": 0.8071146607398987,
|
1330 |
+
"learning_rate": 2.0650071744962256e-05,
|
1331 |
+
"loss": 2.9525,
|
1332 |
+
"step": 14500
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 4.069614035087719,
|
1336 |
+
"eval_accuracy": 0.4232880385660912,
|
1337 |
+
"eval_bleu": 0.1457336973656826,
|
1338 |
+
"eval_loss": 3.1334879398345947,
|
1339 |
+
"eval_perplexity": 22.95390190803781,
|
1340 |
+
"eval_runtime": 20.1672,
|
1341 |
+
"eval_samples_per_second": 56.577,
|
1342 |
+
"eval_steps_per_second": 3.57,
|
1343 |
+
"step": 14500
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 4.097684210526316,
|
1347 |
+
"grad_norm": 0.8192425966262817,
|
1348 |
+
"learning_rate": 2.0026202507954332e-05,
|
1349 |
+
"loss": 2.9449,
|
1350 |
+
"step": 14600
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"epoch": 4.125754385964912,
|
1354 |
+
"grad_norm": 0.8179590702056885,
|
1355 |
+
"learning_rate": 1.940233327094641e-05,
|
1356 |
+
"loss": 2.9534,
|
1357 |
+
"step": 14700
|
1358 |
+
},
|
1359 |
+
{
|
1360 |
+
"epoch": 4.153824561403509,
|
1361 |
+
"grad_norm": 0.8264966607093811,
|
1362 |
+
"learning_rate": 1.8778464033938487e-05,
|
1363 |
+
"loss": 2.957,
|
1364 |
+
"step": 14800
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 4.181894736842105,
|
1368 |
+
"grad_norm": 0.8411971926689148,
|
1369 |
+
"learning_rate": 1.8154594796930563e-05,
|
1370 |
+
"loss": 2.9503,
|
1371 |
+
"step": 14900
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 4.209964912280702,
|
1375 |
+
"grad_norm": 0.818305253982544,
|
1376 |
+
"learning_rate": 1.7530725559922642e-05,
|
1377 |
+
"loss": 2.9621,
|
1378 |
+
"step": 15000
|
1379 |
+
},
|
1380 |
+
{
|
1381 |
+
"epoch": 4.209964912280702,
|
1382 |
+
"eval_accuracy": 0.4239245812568591,
|
1383 |
+
"eval_bleu": 0.14536464175084168,
|
1384 |
+
"eval_loss": 3.1270124912261963,
|
1385 |
+
"eval_perplexity": 22.805745303809648,
|
1386 |
+
"eval_runtime": 12.3884,
|
1387 |
+
"eval_samples_per_second": 92.102,
|
1388 |
+
"eval_steps_per_second": 5.812,
|
1389 |
+
"step": 15000
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 4.2380350877192985,
|
1393 |
+
"grad_norm": 0.8167079091072083,
|
1394 |
+
"learning_rate": 1.6906856322914718e-05,
|
1395 |
+
"loss": 2.944,
|
1396 |
+
"step": 15100
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 4.266105263157895,
|
1400 |
+
"grad_norm": 0.837181031703949,
|
1401 |
+
"learning_rate": 1.6282987085906794e-05,
|
1402 |
+
"loss": 2.9407,
|
1403 |
+
"step": 15200
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 4.294175438596492,
|
1407 |
+
"grad_norm": 0.8356810808181763,
|
1408 |
+
"learning_rate": 1.5659117848898873e-05,
|
1409 |
+
"loss": 2.9364,
|
1410 |
+
"step": 15300
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 4.322245614035087,
|
1414 |
+
"grad_norm": 0.8358649015426636,
|
1415 |
+
"learning_rate": 1.5035248611890947e-05,
|
1416 |
+
"loss": 2.9307,
|
1417 |
+
"step": 15400
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 4.350315789473684,
|
1421 |
+
"grad_norm": 0.842452347278595,
|
1422 |
+
"learning_rate": 1.4411379374883025e-05,
|
1423 |
+
"loss": 2.9422,
|
1424 |
+
"step": 15500
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 4.350315789473684,
|
1428 |
+
"eval_accuracy": 0.42498777032717266,
|
1429 |
+
"eval_bleu": 0.1467649753048137,
|
1430 |
+
"eval_loss": 3.1211211681365967,
|
1431 |
+
"eval_perplexity": 22.671784281214766,
|
1432 |
+
"eval_runtime": 20.2024,
|
1433 |
+
"eval_samples_per_second": 56.479,
|
1434 |
+
"eval_steps_per_second": 3.564,
|
1435 |
+
"step": 15500
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 4.3783859649122805,
|
1439 |
+
"grad_norm": 0.8464500904083252,
|
1440 |
+
"learning_rate": 1.37875101378751e-05,
|
1441 |
+
"loss": 2.9435,
|
1442 |
+
"step": 15600
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 4.406456140350877,
|
1446 |
+
"grad_norm": 0.8314975500106812,
|
1447 |
+
"learning_rate": 1.316364090086718e-05,
|
1448 |
+
"loss": 2.9405,
|
1449 |
+
"step": 15700
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 4.434526315789474,
|
1453 |
+
"grad_norm": 0.8358827829360962,
|
1454 |
+
"learning_rate": 1.2539771663859257e-05,
|
1455 |
+
"loss": 2.9438,
|
1456 |
+
"step": 15800
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 4.46259649122807,
|
1460 |
+
"grad_norm": 0.8394728899002075,
|
1461 |
+
"learning_rate": 1.1915902426851333e-05,
|
1462 |
+
"loss": 2.9233,
|
1463 |
+
"step": 15900
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 4.490666666666667,
|
1467 |
+
"grad_norm": 0.839545488357544,
|
1468 |
+
"learning_rate": 1.1292033189843409e-05,
|
1469 |
+
"loss": 2.9224,
|
1470 |
+
"step": 16000
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 4.490666666666667,
|
1474 |
+
"eval_accuracy": 0.4256748594765614,
|
1475 |
+
"eval_bleu": 0.1454115201862865,
|
1476 |
+
"eval_loss": 3.1149473190307617,
|
1477 |
+
"eval_perplexity": 22.53224330181115,
|
1478 |
+
"eval_runtime": 20.2018,
|
1479 |
+
"eval_samples_per_second": 56.48,
|
1480 |
+
"eval_steps_per_second": 3.564,
|
1481 |
+
"step": 16000
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 4.518736842105263,
|
1485 |
+
"grad_norm": 0.847416341304779,
|
1486 |
+
"learning_rate": 1.0668163952835486e-05,
|
1487 |
+
"loss": 2.9372,
|
1488 |
+
"step": 16100
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"epoch": 4.54680701754386,
|
1492 |
+
"grad_norm": 0.8180661201477051,
|
1493 |
+
"learning_rate": 1.0044294715827562e-05,
|
1494 |
+
"loss": 2.9422,
|
1495 |
+
"step": 16200
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"epoch": 4.574877192982456,
|
1499 |
+
"grad_norm": 0.8318551182746887,
|
1500 |
+
"learning_rate": 9.42042547881964e-06,
|
1501 |
+
"loss": 2.9373,
|
1502 |
+
"step": 16300
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 4.602947368421052,
|
1506 |
+
"grad_norm": 0.8445524573326111,
|
1507 |
+
"learning_rate": 8.796556241811717e-06,
|
1508 |
+
"loss": 2.9212,
|
1509 |
+
"step": 16400
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 4.631017543859649,
|
1513 |
+
"grad_norm": 0.8220964670181274,
|
1514 |
+
"learning_rate": 8.172687004803793e-06,
|
1515 |
+
"loss": 2.9475,
|
1516 |
+
"step": 16500
|
1517 |
+
},
|
1518 |
+
{
|
1519 |
+
"epoch": 4.631017543859649,
|
1520 |
+
"eval_accuracy": 0.4264193488416722,
|
1521 |
+
"eval_bleu": 0.149677834207122,
|
1522 |
+
"eval_loss": 3.1084439754486084,
|
1523 |
+
"eval_perplexity": 22.38618383417341,
|
1524 |
+
"eval_runtime": 20.2407,
|
1525 |
+
"eval_samples_per_second": 56.372,
|
1526 |
+
"eval_steps_per_second": 3.557,
|
1527 |
+
"step": 16500
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 4.659087719298245,
|
1531 |
+
"grad_norm": 0.8326128721237183,
|
1532 |
+
"learning_rate": 7.548817767795871e-06,
|
1533 |
+
"loss": 2.9335,
|
1534 |
+
"step": 16600
|
1535 |
+
},
|
1536 |
+
{
|
1537 |
+
"epoch": 4.687157894736842,
|
1538 |
+
"grad_norm": 0.822635293006897,
|
1539 |
+
"learning_rate": 6.924948530787947e-06,
|
1540 |
+
"loss": 2.9389,
|
1541 |
+
"step": 16700
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"epoch": 4.7152280701754385,
|
1545 |
+
"grad_norm": 0.8398991227149963,
|
1546 |
+
"learning_rate": 6.301079293780024e-06,
|
1547 |
+
"loss": 2.9219,
|
1548 |
+
"step": 16800
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 4.743298245614035,
|
1552 |
+
"grad_norm": 0.8308337330818176,
|
1553 |
+
"learning_rate": 5.677210056772101e-06,
|
1554 |
+
"loss": 2.9374,
|
1555 |
+
"step": 16900
|
1556 |
+
},
|
1557 |
+
{
|
1558 |
+
"epoch": 4.771368421052632,
|
1559 |
+
"grad_norm": 0.8378835320472717,
|
1560 |
+
"learning_rate": 5.053340819764177e-06,
|
1561 |
+
"loss": 2.9318,
|
1562 |
+
"step": 17000
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 4.771368421052632,
|
1566 |
+
"eval_accuracy": 0.4270327601022238,
|
1567 |
+
"eval_bleu": 0.14678838838741357,
|
1568 |
+
"eval_loss": 3.104135036468506,
|
1569 |
+
"eval_perplexity": 22.289930657494395,
|
1570 |
+
"eval_runtime": 10.9973,
|
1571 |
+
"eval_samples_per_second": 103.753,
|
1572 |
+
"eval_steps_per_second": 6.547,
|
1573 |
+
"step": 17000
|
1574 |
+
},
|
1575 |
+
{
|
1576 |
+
"epoch": 4.799438596491228,
|
1577 |
+
"grad_norm": 0.8561663031578064,
|
1578 |
+
"learning_rate": 4.429471582756255e-06,
|
1579 |
+
"loss": 2.9288,
|
1580 |
+
"step": 17100
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 4.827508771929825,
|
1584 |
+
"grad_norm": 0.8296898007392883,
|
1585 |
+
"learning_rate": 3.805602345748331e-06,
|
1586 |
+
"loss": 2.9205,
|
1587 |
+
"step": 17200
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 4.855578947368421,
|
1591 |
+
"grad_norm": 0.8513033390045166,
|
1592 |
+
"learning_rate": 3.1817331087404082e-06,
|
1593 |
+
"loss": 2.9328,
|
1594 |
+
"step": 17300
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"epoch": 4.883649122807018,
|
1598 |
+
"grad_norm": 0.8511661887168884,
|
1599 |
+
"learning_rate": 2.557863871732485e-06,
|
1600 |
+
"loss": 2.9392,
|
1601 |
+
"step": 17400
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"epoch": 4.911719298245614,
|
1605 |
+
"grad_norm": 0.8221142292022705,
|
1606 |
+
"learning_rate": 1.933994634724562e-06,
|
1607 |
+
"loss": 2.9268,
|
1608 |
+
"step": 17500
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 4.911719298245614,
|
1612 |
+
"eval_accuracy": 0.4273857285929322,
|
1613 |
+
"eval_bleu": 0.1460515137764717,
|
1614 |
+
"eval_loss": 3.101016044616699,
|
1615 |
+
"eval_perplexity": 22.220516852214956,
|
1616 |
+
"eval_runtime": 10.9797,
|
1617 |
+
"eval_samples_per_second": 103.919,
|
1618 |
+
"eval_steps_per_second": 6.558,
|
1619 |
+
"step": 17500
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 4.93978947368421,
|
1623 |
+
"grad_norm": 0.8456584811210632,
|
1624 |
+
"learning_rate": 1.3101253977166387e-06,
|
1625 |
+
"loss": 2.9326,
|
1626 |
+
"step": 17600
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 4.967859649122807,
|
1630 |
+
"grad_norm": 0.8384252786636353,
|
1631 |
+
"learning_rate": 6.862561607087155e-07,
|
1632 |
+
"loss": 2.9198,
|
1633 |
+
"step": 17700
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 4.995929824561403,
|
1637 |
+
"grad_norm": 0.8392898440361023,
|
1638 |
+
"learning_rate": 6.238692370079231e-08,
|
1639 |
+
"loss": 2.9187,
|
1640 |
+
"step": 17800
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 4.998736842105263,
|
1644 |
+
"step": 17810,
|
1645 |
+
"total_flos": 1.0584067483285586e+18,
|
1646 |
+
"train_loss": 3.584141966119902,
|
1647 |
+
"train_runtime": 28526.973,
|
1648 |
+
"train_samples_per_second": 19.98,
|
1649 |
+
"train_steps_per_second": 0.624
|
1650 |
+
}
|
1651 |
+
],
|
1652 |
+
"logging_steps": 100,
|
1653 |
+
"max_steps": 17810,
|
1654 |
+
"num_input_tokens_seen": 0,
|
1655 |
+
"num_train_epochs": 5,
|
1656 |
+
"save_steps": 500,
|
1657 |
+
"stateful_callbacks": {
|
1658 |
+
"EarlyStoppingCallback": {
|
1659 |
+
"args": {
|
1660 |
+
"early_stopping_patience": 2,
|
1661 |
+
"early_stopping_threshold": 0.0
|
1662 |
+
},
|
1663 |
+
"attributes": {
|
1664 |
+
"early_stopping_patience_counter": 0
|
1665 |
+
}
|
1666 |
+
},
|
1667 |
+
"TrainerControl": {
|
1668 |
+
"args": {
|
1669 |
+
"should_epoch_stop": false,
|
1670 |
+
"should_evaluate": false,
|
1671 |
+
"should_log": false,
|
1672 |
+
"should_save": true,
|
1673 |
+
"should_training_stop": true
|
1674 |
+
},
|
1675 |
+
"attributes": {}
|
1676 |
+
}
|
1677 |
+
},
|
1678 |
+
"total_flos": 1.0584067483285586e+18,
|
1679 |
+
"train_batch_size": 16,
|
1680 |
+
"trial_name": null,
|
1681 |
+
"trial_params": null
|
1682 |
+
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5496
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a22d41e9776c70f9fbe14b433cb94d3c8f4c35c67d89a20c84239b589a50ea0d
|
3 |
size 5496
|