parallel-gpt2-medium-wikitext

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2350
  • Accuracy: 0.4161
  • Perplexity: 25.4075
  • Bleu: 0.1473

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Perplexity Bleu
6.077 0.2806 500 5.9554 0.1870 385.8189 0.0352
5.1123 0.5612 1000 4.9836 0.2568 145.9931 0.0625
4.4123 0.8418 1500 4.3035 0.3159 73.9588 0.0843
4.0245 1.1223 2000 3.9678 0.3470 52.8693 0.1076
3.8298 1.4029 2500 3.7842 0.3630 44.0014 0.1166
3.7181 1.6835 3000 3.6620 0.3733 38.9404 0.1272
3.6123 1.9641 3500 3.5694 0.3818 35.4958 0.1311
3.4993 2.2447 4000 3.5029 0.3877 33.2118 0.1384
3.4358 2.5253 4500 3.4484 0.3930 31.4506 0.1358
3.4039 2.8058 5000 3.3989 0.3979 29.9323 0.1403
3.2908 3.0864 5500 3.3633 0.4018 28.8837 0.1409
3.2828 3.3670 6000 3.3326 0.4051 28.0103 0.1446
3.2606 3.6476 6500 3.3031 0.4081 27.1958 0.1457
3.234 3.9282 7000 3.2796 0.4106 26.5655 0.1433
3.1713 4.2088 7500 3.2621 0.4126 26.1045 0.1461
3.1314 4.4893 8000 3.2476 0.4145 25.7281 0.1455
3.1412 4.7699 8500 3.2350 0.4161 25.4075 0.1473

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
357M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support