shivanandmn commited on
Commit
1eca900
·
verified ·
1 Parent(s): 626dfda

Model save

Browse files
Files changed (2) hide show
  1. README.md +25 -45
  2. modeling_parallel_gpt2.py +2 -2
README.md CHANGED
@@ -17,10 +17,10 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 3.1010
21
- - Accuracy: 0.4274
22
- - Perplexity: 22.2205
23
- - Bleu: 0.1461
24
 
25
  ## Model description
26
 
@@ -40,11 +40,9 @@ More information needed
40
 
41
  The following hyperparameters were used during training:
42
  - learning_rate: 0.0001
43
- - train_batch_size: 16
44
- - eval_batch_size: 16
45
  - seed: 42
46
- - gradient_accumulation_steps: 2
47
- - total_train_batch_size: 32
48
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
49
  - lr_scheduler_type: linear
50
  - lr_scheduler_warmup_ratio: 0.1
@@ -52,43 +50,25 @@ The following hyperparameters were used during training:
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | Bleu |
56
- |:-------------:|:------:|:-----:|:---------------:|:--------:|:----------:|:------:|
57
- | 6.4455 | 0.1404 | 500 | 6.3313 | 0.1766 | 561.8647 | 0.0257 |
58
- | 5.7254 | 0.2807 | 1000 | 5.6235 | 0.2136 | 276.8543 | 0.0454 |
59
- | 5.1084 | 0.4211 | 1500 | 4.9822 | 0.2576 | 145.7898 | 0.0649 |
60
- | 4.5994 | 0.5614 | 2000 | 4.5052 | 0.2929 | 90.4901 | 0.0741 |
61
- | 4.2338 | 0.7018 | 2500 | 4.1378 | 0.3273 | 62.6674 | 0.0937 |
62
- | 3.9975 | 0.8421 | 3000 | 3.9286 | 0.3465 | 50.8364 | 0.1031 |
63
- | 3.8648 | 0.9825 | 3500 | 3.7926 | 0.3583 | 44.3697 | 0.1166 |
64
- | 3.7164 | 1.1227 | 4000 | 3.6987 | 0.3667 | 40.3929 | 0.1226 |
65
- | 3.6639 | 1.2630 | 4500 | 3.6221 | 0.3734 | 37.4157 | 0.1282 |
66
- | 3.582 | 1.4034 | 5000 | 3.5575 | 0.3796 | 35.0763 | 0.1277 |
67
- | 3.5315 | 1.5437 | 5500 | 3.5064 | 0.3840 | 33.3276 | 0.1312 |
68
- | 3.5025 | 1.6841 | 6000 | 3.4594 | 0.3881 | 31.7989 | 0.1366 |
69
- | 3.4462 | 1.8244 | 6500 | 3.4208 | 0.3919 | 30.5952 | 0.1310 |
70
- | 3.4167 | 1.9648 | 7000 | 3.3863 | 0.3956 | 29.5564 | 0.1355 |
71
- | 3.2967 | 2.1050 | 7500 | 3.3548 | 0.3989 | 28.6395 | 0.1317 |
72
- | 3.2909 | 2.2453 | 8000 | 3.3290 | 0.4015 | 27.9115 | 0.1381 |
73
- | 3.2593 | 2.3857 | 8500 | 3.3044 | 0.4039 | 27.2323 | 0.1422 |
74
- | 3.2408 | 2.5260 | 9000 | 3.2826 | 0.4061 | 26.6448 | 0.1412 |
75
- | 3.2278 | 2.6664 | 9500 | 3.2592 | 0.4090 | 26.0285 | 0.1436 |
76
- | 3.2172 | 2.8067 | 10000 | 3.2415 | 0.4105 | 25.5733 | 0.1412 |
77
- | 3.2145 | 2.9471 | 10500 | 3.2227 | 0.4125 | 25.0946 | 0.1402 |
78
- | 3.0749 | 3.0873 | 11000 | 3.2099 | 0.4143 | 24.7768 | 0.1413 |
79
- | 3.0777 | 3.2276 | 11500 | 3.1978 | 0.4160 | 24.4784 | 0.1420 |
80
- | 3.0743 | 3.368 | 12000 | 3.1855 | 0.4174 | 24.1797 | 0.1438 |
81
- | 3.0679 | 3.5084 | 12500 | 3.1735 | 0.4183 | 23.8912 | 0.1397 |
82
- | 3.0635 | 3.6487 | 13000 | 3.1599 | 0.4200 | 23.5691 | 0.1423 |
83
- | 3.0262 | 3.7891 | 13500 | 3.1489 | 0.4211 | 23.3095 | 0.1432 |
84
- | 3.0382 | 3.9294 | 14000 | 3.1397 | 0.4223 | 23.0970 | 0.1461 |
85
- | 2.9525 | 4.0696 | 14500 | 3.1335 | 0.4233 | 22.9539 | 0.1457 |
86
- | 2.9621 | 4.2100 | 15000 | 3.1270 | 0.4239 | 22.8057 | 0.1454 |
87
- | 2.9422 | 4.3503 | 15500 | 3.1211 | 0.4250 | 22.6718 | 0.1468 |
88
- | 2.9224 | 4.4907 | 16000 | 3.1149 | 0.4257 | 22.5322 | 0.1454 |
89
- | 2.9475 | 4.6310 | 16500 | 3.1084 | 0.4264 | 22.3862 | 0.1497 |
90
- | 2.9318 | 4.7714 | 17000 | 3.1041 | 0.4270 | 22.2899 | 0.1468 |
91
- | 2.9268 | 4.9117 | 17500 | 3.1010 | 0.4274 | 22.2205 | 0.1461 |
92
 
93
 
94
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 3.2350
21
+ - Accuracy: 0.4161
22
+ - Perplexity: 25.4075
23
+ - Bleu: 0.1473
24
 
25
  ## Model description
26
 
 
40
 
41
  The following hyperparameters were used during training:
42
  - learning_rate: 0.0001
43
+ - train_batch_size: 64
44
+ - eval_batch_size: 64
45
  - seed: 42
 
 
46
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
47
  - lr_scheduler_type: linear
48
  - lr_scheduler_warmup_ratio: 0.1
 
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | Bleu |
54
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|
55
+ | 6.077 | 0.2806 | 500 | 5.9554 | 0.1870 | 385.8189 | 0.0352 |
56
+ | 5.1123 | 0.5612 | 1000 | 4.9836 | 0.2568 | 145.9931 | 0.0625 |
57
+ | 4.4123 | 0.8418 | 1500 | 4.3035 | 0.3159 | 73.9588 | 0.0843 |
58
+ | 4.0245 | 1.1223 | 2000 | 3.9678 | 0.3470 | 52.8693 | 0.1076 |
59
+ | 3.8298 | 1.4029 | 2500 | 3.7842 | 0.3630 | 44.0014 | 0.1166 |
60
+ | 3.7181 | 1.6835 | 3000 | 3.6620 | 0.3733 | 38.9404 | 0.1272 |
61
+ | 3.6123 | 1.9641 | 3500 | 3.5694 | 0.3818 | 35.4958 | 0.1311 |
62
+ | 3.4993 | 2.2447 | 4000 | 3.5029 | 0.3877 | 33.2118 | 0.1384 |
63
+ | 3.4358 | 2.5253 | 4500 | 3.4484 | 0.3930 | 31.4506 | 0.1358 |
64
+ | 3.4039 | 2.8058 | 5000 | 3.3989 | 0.3979 | 29.9323 | 0.1403 |
65
+ | 3.2908 | 3.0864 | 5500 | 3.3633 | 0.4018 | 28.8837 | 0.1409 |
66
+ | 3.2828 | 3.3670 | 6000 | 3.3326 | 0.4051 | 28.0103 | 0.1446 |
67
+ | 3.2606 | 3.6476 | 6500 | 3.3031 | 0.4081 | 27.1958 | 0.1457 |
68
+ | 3.234 | 3.9282 | 7000 | 3.2796 | 0.4106 | 26.5655 | 0.1433 |
69
+ | 3.1713 | 4.2088 | 7500 | 3.2621 | 0.4126 | 26.1045 | 0.1461 |
70
+ | 3.1314 | 4.4893 | 8000 | 3.2476 | 0.4145 | 25.7281 | 0.1455 |
71
+ | 3.1412 | 4.7699 | 8500 | 3.2350 | 0.4161 | 25.4075 | 0.1473 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
 
74
  ### Framework versions
modeling_parallel_gpt2.py CHANGED
@@ -43,7 +43,7 @@ class ParallelGPT2Model(ParallelGPT2PretrainedModel):
43
  self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
44
  self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
45
  self.config.bottleneck_method = getattr(config, "bottleneck_method", "mean")
46
- if self.config.bottleneck_method=="concate":
47
  self.bottleneck = nn.Linear(2*self.embed_dim, self.embed_dim)
48
 
49
  # Model parallel
@@ -295,7 +295,7 @@ class ParallelGPT2Model(ParallelGPT2PretrainedModel):
295
  use_cache=use_cache,
296
  output_attentions=output_attentions,
297
  )
298
- if self.config.bottleneck_method=="concate":
299
  hidden_states = torch.cat((outputs_left[0], outputs_right[0]), dim=-1)
300
  hidden_states = self.bottleneck(hidden_states)
301
  elif self.config.bottleneck_method=="add":
 
43
  self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
44
  self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
45
  self.config.bottleneck_method = getattr(config, "bottleneck_method", "mean")
46
+ if self.config.bottleneck_method=="concat":
47
  self.bottleneck = nn.Linear(2*self.embed_dim, self.embed_dim)
48
 
49
  # Model parallel
 
295
  use_cache=use_cache,
296
  output_attentions=output_attentions,
297
  )
298
+ if self.config.bottleneck_method=="concat":
299
  hidden_states = torch.cat((outputs_left[0], outputs_right[0]), dim=-1)
300
  hidden_states = self.bottleneck(hidden_states)
301
  elif self.config.bottleneck_method=="add":