Model save
Browse files- README.md +25 -45
- modeling_parallel_gpt2.py +2 -2
README.md
CHANGED
@@ -17,10 +17,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 3.
|
21 |
-
- Accuracy: 0.
|
22 |
-
- Perplexity:
|
23 |
-
- Bleu: 0.
|
24 |
|
25 |
## Model description
|
26 |
|
@@ -40,11 +40,9 @@ More information needed
|
|
40 |
|
41 |
The following hyperparameters were used during training:
|
42 |
- learning_rate: 0.0001
|
43 |
-
- train_batch_size:
|
44 |
-
- eval_batch_size:
|
45 |
- seed: 42
|
46 |
-
- gradient_accumulation_steps: 2
|
47 |
-
- total_train_batch_size: 32
|
48 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
49 |
- lr_scheduler_type: linear
|
50 |
- lr_scheduler_warmup_ratio: 0.1
|
@@ -52,43 +50,25 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
-
| Training Loss | Epoch | Step
|
56 |
-
|
57 |
-
| 6.
|
58 |
-
| 5.
|
59 |
-
|
|
60 |
-
| 4.
|
61 |
-
|
|
62 |
-
| 3.
|
63 |
-
| 3.
|
64 |
-
| 3.
|
65 |
-
| 3.
|
66 |
-
| 3.
|
67 |
-
| 3.
|
68 |
-
| 3.
|
69 |
-
| 3.
|
70 |
-
| 3.
|
71 |
-
| 3.
|
72 |
-
| 3.
|
73 |
-
| 3.
|
74 |
-
| 3.2408 | 2.5260 | 9000 | 3.2826 | 0.4061 | 26.6448 | 0.1412 |
|
75 |
-
| 3.2278 | 2.6664 | 9500 | 3.2592 | 0.4090 | 26.0285 | 0.1436 |
|
76 |
-
| 3.2172 | 2.8067 | 10000 | 3.2415 | 0.4105 | 25.5733 | 0.1412 |
|
77 |
-
| 3.2145 | 2.9471 | 10500 | 3.2227 | 0.4125 | 25.0946 | 0.1402 |
|
78 |
-
| 3.0749 | 3.0873 | 11000 | 3.2099 | 0.4143 | 24.7768 | 0.1413 |
|
79 |
-
| 3.0777 | 3.2276 | 11500 | 3.1978 | 0.4160 | 24.4784 | 0.1420 |
|
80 |
-
| 3.0743 | 3.368 | 12000 | 3.1855 | 0.4174 | 24.1797 | 0.1438 |
|
81 |
-
| 3.0679 | 3.5084 | 12500 | 3.1735 | 0.4183 | 23.8912 | 0.1397 |
|
82 |
-
| 3.0635 | 3.6487 | 13000 | 3.1599 | 0.4200 | 23.5691 | 0.1423 |
|
83 |
-
| 3.0262 | 3.7891 | 13500 | 3.1489 | 0.4211 | 23.3095 | 0.1432 |
|
84 |
-
| 3.0382 | 3.9294 | 14000 | 3.1397 | 0.4223 | 23.0970 | 0.1461 |
|
85 |
-
| 2.9525 | 4.0696 | 14500 | 3.1335 | 0.4233 | 22.9539 | 0.1457 |
|
86 |
-
| 2.9621 | 4.2100 | 15000 | 3.1270 | 0.4239 | 22.8057 | 0.1454 |
|
87 |
-
| 2.9422 | 4.3503 | 15500 | 3.1211 | 0.4250 | 22.6718 | 0.1468 |
|
88 |
-
| 2.9224 | 4.4907 | 16000 | 3.1149 | 0.4257 | 22.5322 | 0.1454 |
|
89 |
-
| 2.9475 | 4.6310 | 16500 | 3.1084 | 0.4264 | 22.3862 | 0.1497 |
|
90 |
-
| 2.9318 | 4.7714 | 17000 | 3.1041 | 0.4270 | 22.2899 | 0.1468 |
|
91 |
-
| 2.9268 | 4.9117 | 17500 | 3.1010 | 0.4274 | 22.2205 | 0.1461 |
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 3.2350
|
21 |
+
- Accuracy: 0.4161
|
22 |
+
- Perplexity: 25.4075
|
23 |
+
- Bleu: 0.1473
|
24 |
|
25 |
## Model description
|
26 |
|
|
|
40 |
|
41 |
The following hyperparameters were used during training:
|
42 |
- learning_rate: 0.0001
|
43 |
+
- train_batch_size: 64
|
44 |
+
- eval_batch_size: 64
|
45 |
- seed: 42
|
|
|
|
|
46 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
47 |
- lr_scheduler_type: linear
|
48 |
- lr_scheduler_warmup_ratio: 0.1
|
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | Bleu |
|
54 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|
|
55 |
+
| 6.077 | 0.2806 | 500 | 5.9554 | 0.1870 | 385.8189 | 0.0352 |
|
56 |
+
| 5.1123 | 0.5612 | 1000 | 4.9836 | 0.2568 | 145.9931 | 0.0625 |
|
57 |
+
| 4.4123 | 0.8418 | 1500 | 4.3035 | 0.3159 | 73.9588 | 0.0843 |
|
58 |
+
| 4.0245 | 1.1223 | 2000 | 3.9678 | 0.3470 | 52.8693 | 0.1076 |
|
59 |
+
| 3.8298 | 1.4029 | 2500 | 3.7842 | 0.3630 | 44.0014 | 0.1166 |
|
60 |
+
| 3.7181 | 1.6835 | 3000 | 3.6620 | 0.3733 | 38.9404 | 0.1272 |
|
61 |
+
| 3.6123 | 1.9641 | 3500 | 3.5694 | 0.3818 | 35.4958 | 0.1311 |
|
62 |
+
| 3.4993 | 2.2447 | 4000 | 3.5029 | 0.3877 | 33.2118 | 0.1384 |
|
63 |
+
| 3.4358 | 2.5253 | 4500 | 3.4484 | 0.3930 | 31.4506 | 0.1358 |
|
64 |
+
| 3.4039 | 2.8058 | 5000 | 3.3989 | 0.3979 | 29.9323 | 0.1403 |
|
65 |
+
| 3.2908 | 3.0864 | 5500 | 3.3633 | 0.4018 | 28.8837 | 0.1409 |
|
66 |
+
| 3.2828 | 3.3670 | 6000 | 3.3326 | 0.4051 | 28.0103 | 0.1446 |
|
67 |
+
| 3.2606 | 3.6476 | 6500 | 3.3031 | 0.4081 | 27.1958 | 0.1457 |
|
68 |
+
| 3.234 | 3.9282 | 7000 | 3.2796 | 0.4106 | 26.5655 | 0.1433 |
|
69 |
+
| 3.1713 | 4.2088 | 7500 | 3.2621 | 0.4126 | 26.1045 | 0.1461 |
|
70 |
+
| 3.1314 | 4.4893 | 8000 | 3.2476 | 0.4145 | 25.7281 | 0.1455 |
|
71 |
+
| 3.1412 | 4.7699 | 8500 | 3.2350 | 0.4161 | 25.4075 | 0.1473 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
### Framework versions
|
modeling_parallel_gpt2.py
CHANGED
@@ -43,7 +43,7 @@ class ParallelGPT2Model(ParallelGPT2PretrainedModel):
|
|
43 |
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
44 |
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
45 |
self.config.bottleneck_method = getattr(config, "bottleneck_method", "mean")
|
46 |
-
if self.config.bottleneck_method=="
|
47 |
self.bottleneck = nn.Linear(2*self.embed_dim, self.embed_dim)
|
48 |
|
49 |
# Model parallel
|
@@ -295,7 +295,7 @@ class ParallelGPT2Model(ParallelGPT2PretrainedModel):
|
|
295 |
use_cache=use_cache,
|
296 |
output_attentions=output_attentions,
|
297 |
)
|
298 |
-
if self.config.bottleneck_method=="
|
299 |
hidden_states = torch.cat((outputs_left[0], outputs_right[0]), dim=-1)
|
300 |
hidden_states = self.bottleneck(hidden_states)
|
301 |
elif self.config.bottleneck_method=="add":
|
|
|
43 |
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
44 |
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
45 |
self.config.bottleneck_method = getattr(config, "bottleneck_method", "mean")
|
46 |
+
if self.config.bottleneck_method=="concat":
|
47 |
self.bottleneck = nn.Linear(2*self.embed_dim, self.embed_dim)
|
48 |
|
49 |
# Model parallel
|
|
|
295 |
use_cache=use_cache,
|
296 |
output_attentions=output_attentions,
|
297 |
)
|
298 |
+
if self.config.bottleneck_method=="concat":
|
299 |
hidden_states = torch.cat((outputs_left[0], outputs_right[0]), dim=-1)
|
300 |
hidden_states = self.bottleneck(hidden_states)
|
301 |
elif self.config.bottleneck_method=="add":
|