|
--- |
|
library_name: transformers |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- bleu |
|
model-index: |
|
- name: gpt2-medium-wikitext |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gpt2-medium-wikitext |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.1671 |
|
- Accuracy: 0.4217 |
|
- Perplexity: 23.7377 |
|
- Bleu: 0.1460 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | Bleu | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:| |
|
| 6.0809 | 0.2806 | 500 | 5.9580 | 0.1883 | 386.8254 | 0.0333 | |
|
| 5.0644 | 0.5612 | 1000 | 4.9191 | 0.2623 | 136.8761 | 0.0651 | |
|
| 4.3331 | 0.8418 | 1500 | 4.2124 | 0.3226 | 67.5163 | 0.0890 | |
|
| 3.9451 | 1.1223 | 2000 | 3.8835 | 0.3532 | 48.5942 | 0.1090 | |
|
| 3.7568 | 1.4029 | 2500 | 3.7051 | 0.3684 | 40.6559 | 0.1226 | |
|
| 3.6478 | 1.6835 | 3000 | 3.5827 | 0.3787 | 35.9710 | 0.1311 | |
|
| 3.5435 | 1.9641 | 3500 | 3.4940 | 0.3877 | 32.9179 | 0.1343 | |
|
| 3.4222 | 2.2447 | 4000 | 3.4292 | 0.3936 | 30.8527 | 0.1343 | |
|
| 3.3604 | 2.5253 | 4500 | 3.3728 | 0.3990 | 29.1601 | 0.1414 | |
|
| 3.3288 | 2.8058 | 5000 | 3.3269 | 0.4038 | 27.8518 | 0.1381 | |
|
| 3.2074 | 3.0864 | 5500 | 3.2887 | 0.4079 | 26.8092 | 0.1423 | |
|
| 3.2007 | 3.3670 | 6000 | 3.2605 | 0.4115 | 26.0632 | 0.1464 | |
|
| 3.1787 | 3.6476 | 6500 | 3.2328 | 0.4140 | 25.3497 | 0.1428 | |
|
| 3.1529 | 3.9282 | 7000 | 3.2085 | 0.4166 | 24.7424 | 0.1425 | |
|
| 3.0849 | 4.2088 | 7500 | 3.1921 | 0.4184 | 24.3384 | 0.1430 | |
|
| 3.0471 | 4.4893 | 8000 | 3.1796 | 0.4202 | 24.0366 | 0.1428 | |
|
| 3.0569 | 4.7699 | 8500 | 3.1671 | 0.4217 | 23.7377 | 0.1460 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |
|
|