metadata
library_name: transformers
language:
- kz
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- Commonvoice-kazakh
metrics:
- wer
model-index:
- name: Kammi
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: BilalS96/Commonvoice-kazakh
type: Commonvoice-kazakh
config: kk
split: None
args: 'config: kzk, split: test'
metrics:
- type: wer
value: 1
name: Wer
Kammi
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the BilalS96/Commonvoice-kazakh dataset. It achieves the following results on the evaluation set:
- Loss: 3.2408
- Wer: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.255 | 4.3860 | 500 | 3.2401 | 1.0 |
3.2362 | 8.7719 | 1000 | 3.2517 | 1.0 |
3.2342 | 13.1579 | 1500 | 3.2470 | 1.0 |
3.2288 | 17.5439 | 2000 | 3.2386 | 1.0 |
3.2227 | 21.9298 | 2500 | 3.2335 | 1.0 |
3.2373 | 26.3158 | 3000 | 3.2408 | 1.0 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0